Advertisement

Regional Environmental Change

, Volume 14, Issue 3, pp 919–931 | Cite as

Climate adaptation of interconnected infrastructures: a framework for supporting governance

  • L. A. Bollinger
  • C. W. J. Bogmans
  • E. J. L. Chappin
  • G. P. J. Dijkema
  • J. N. Huibregtse
  • N. Maas
  • T. Schenk
  • M. Snelder
  • P. van Thienen
  • S. de Wit
  • B. Wols
  • L. A. Tavasszy
Original Article

Abstract

Infrastructures are critical for human society, but vulnerable to climate change. The current body of research on infrastructure adaptation does not adequately account for the interconnectedness of infrastructures, both internally and with one another. We take a step toward addressing this gap through the introduction of a framework for infrastructure adaptation that conceptualizes infrastructures as complex socio-technical “systems of systems” embedded in a changing natural environment. We demonstrate the use of this framework by structuring potential climate change impacts and identifying adaptation options for a preliminary set of cases—road, electricity and drinking water infrastructures. By helping to clarify the relationships between impacts at different levels, we find that the framework facilitates the identification of key nodes in the web of possible impacts and helps in the identification of particularly nocuous weather conditions. We also explore how the framework may be applied more comprehensively to facilitate adaptation governance. We suggest that it may help to ensure that the mental models of stakeholders and the quantitative models of researchers incorporate the essential aspects of interacting climate and infrastructure systems. Further research is necessary to test the framework in these contexts and to determine when and where its application may be most beneficial.

Keywords

Climate change adaptation Governance Road Electricity Drinking water Socio-technical systems Systems of systems 

Notes

Acknowledgments

This work is supported by the Knowledge for Climate program, project INCAH—Infrastructure Networks Climate Adaptation and Hotspots.

References

  1. Agusdinata and DeLaurentis (2008) Specification of system-of-systems for policymaking in the energy sector. Integr Assess J 8(2):1–24Google Scholar
  2. Baarse G, Noordam D, Zanting HA (2008) De risicobenadering voor adaptatie van infrastructuur aan klimaatverandering Raad voor Verkeer en Waterstaat. ArcadisGoogle Scholar
  3. Bando M, Hasebe K, Nakayama A, Shibata A, Sugiyama Y (1995) Dynamical model of traffic congestion and numerical simulation. Phys Rev E 51(2):1035–1042CrossRefGoogle Scholar
  4. Billings RB, Jones CV (2008) Forecasting urban water demand. American water works association, USAGoogle Scholar
  5. Bles T, Yves E, Fadeuihe JJ, Falemo S, Lind B, Mens M, Ray M, Sandersen F (2010) Risk management for roads in a changing climate a guidebook for the RIMAROCC method final version ERA-NET ROAD. Available online at: http://kennisonline.deltares.nl/product/22249
  6. Camacho AE (2009) Adapting Governance to Climate Change: Learning to Manage Uncertainty. Notre Dame Law School Legal Studies Research Paper No 09-06Google Scholar
  7. Carreras BA, Newman DE, Gradney P, Lynch VE, Dobson I (2007) Interdependent Risk in Interacting Infrastructure Systems. Proceedings of the 40th Hawaii International Conference on System Sciences 0:112cGoogle Scholar
  8. Cash DW, Clark WC, Alcock F, Dickson NM, Eckley N, Guston DH, Jager J, Mitchell RB (2003) Knowledge systems for sustainable development. Proc Natl Acad Sci USA 100(14):8086–8091CrossRefGoogle Scholar
  9. Chappin EJL, van der Lei T (2012) Modeling the adaptation of infrastructures to prevent the effects of climate change—an overview of existing literature. In: Third international engineering systems symposium—design and governance in engineering systems—roots trunk blossomsGoogle Scholar
  10. Claussen E, Cochran VA, Davis DP (2001) Climate change: science, strategies and solutions. Brill Academic Publishers, ArlingtonGoogle Scholar
  11. Costanza R, Ruth M (1998) using dynamic modeling to scope environmental problems and build consensus. Environ Manag 22(2):183–195CrossRefGoogle Scholar
  12. De Groot RS, van Ierland EC, Kuikman PJ, Nillesen EEM, Platteeuw M, Tassone VC, Verhagen AJA, Verzandvoort-van Dijck S (2006) Climate adaptation in the Netherlands. Wageningen UR, The NetherlandsGoogle Scholar
  13. Decicco J, Mark J (1998) Meeting the energy and climate challenge for transportation in the United States. Energy Policy 26(5):395–412CrossRefGoogle Scholar
  14. Dheenathayalan P, Cuenca MC, Hanssen R (2011) Different approaches for PSI target characterization for monitoring urban infrastructure, In: 8th International Workshop on Advances in the Science and Applications of SAR Interferometry. Frascati (Italy)Google Scholar
  15. Doremus H, Andreen WL, Camacho A, Farber DA, Glicksman RL, Goble D, Karkkainen BC, Rohlf D, Tarlock AD, Zellmer SB, Jones S, Huang Y (2011) Making Good Use of Adaptive Management Center for Progressive Reform. White Paper #1104Google Scholar
  16. Finon D, Pignon V (2008) Electricity and long-term capacity adequacy: the quest for regulatory mechanism compatible with electricity market. Util Policy 16(3):143–158CrossRefGoogle Scholar
  17. Frei C, Schoell R, Fukutome S, Schmidli J, Vidale PL (2006) Future change of precipitation extremes in Europe: intercomparison of scenarios from regional climate models. J Geophys Res 111:D06105Google Scholar
  18. Functowicz SO, Ravetz JR (1993) Science for the post-normal age. Futures 25(7):739–755CrossRefGoogle Scholar
  19. Giorgi F, Marinucci MR, Bates GT (1993) Development of a second-generation regional climate model (REGCM2) Part I: boundary-layer and radiative transfer processes. Mon Weather Rev 121(10):2794–2813CrossRefGoogle Scholar
  20. Gunderson LH, Holling CS (eds) (2002) Panarchy: understanding transformations in human and natural systems. Island Press, Washington, DCGoogle Scholar
  21. Haimes YY, Jiang P (2001) Leontief-based model of risk in complex interconnected infrastructures. J Infrastruct Syst 7:1–12CrossRefGoogle Scholar
  22. Hor CL, Watson SJ, Majithia S (2005) Analyzing the impact of weather variables on monthly electricity demand. IEEE Trans Power Syst 20(4):2078–2085CrossRefGoogle Scholar
  23. Hu Y, Hubble DW (2007) Factors contributing to the failure of asbestos cement water mains. Can J Civ Eng 34(5):608–621CrossRefGoogle Scholar
  24. Hughes TP (1987) The evolution of large technological systems. In: Bijker WE, Hughes TP, Pinch TJ (eds) The social construction of technological systems: new directions in the sociology and history of technology. MIT Press, Cambridge, pp 51–82Google Scholar
  25. Hunt A, Watkiss P (2011) Climate change impacts and adaptation in cities: a review of the literature. Clim Chang 104(1):13–49CrossRefGoogle Scholar
  26. Innes JE, Booher DE (2010) Planning with complexity: an introduction to collaborative rationality for public policy new. Routledge, New YorkGoogle Scholar
  27. IPCC (2012) Managing the risks of extreme events and disasters to advance climate change adaptation. In: Field CB, Barros V, Stocker TF, Dahe Q, Dokken DJ, Plattner GK, Ebi KL, Allen SK, Mastrandrea MD, Tignor M, Mach KJ, Midgley PM (eds) Cambridge University Press, CambridgeGoogle Scholar
  28. Janssen MA, Ostrom E (2006) Empirically based agent-based models. Ecol Soc 11(2):37Google Scholar
  29. Kirshen P, Ruth M, Anderson W (2008) Interdependencies of urban climate change impacts and adaptation strategies: a case study of metropolitan Boston USA. Clim Chang 86(1–2):105–122CrossRefGoogle Scholar
  30. Kleiner Y, Rajani B (2001) Comprehensive review of structural deterioration of water mains: statistical models. Urban Water 3(3):131–150CrossRefGoogle Scholar
  31. Koch H, Vogele S (2009) Dynamic modeling of water demand water availability and adaptation strategies for power plants to global change. Ecol Econ 68(7):2031–2039CrossRefGoogle Scholar
  32. Koetse MJ, Rietveld P (2009) The impact of climate change and weather on transport: an overview of empirical findings. Transp Res Part D 14(3):205–221CrossRefGoogle Scholar
  33. Oostroom H, Annema JA, Kolkman, J (2008) Effecten van klimaatverandering op verkeer en vervoer Implicaties voor beleid. Kennisinstituut voor MobiliteitsbeleidGoogle Scholar
  34. Laird J, Nellthorp J, Mackie PJ (2005) Network effects and total economic impact in transport appraisal. Transp Policy 12(6):537–544CrossRefGoogle Scholar
  35. Larsen P, Goldsmith S, Smith O, Wilson ML, Strzepek K, Chinowsky P, Saylor B (2007) Estimating future costs for Alaska public infrastructure at risk from climate change. Glob Environ Chang 18(3):442–457CrossRefGoogle Scholar
  36. Linnerud K, Mideksa TK, Eskeland GS (2011) The impact of climate change on nuclear power supply. Energy J 32(1):49–168CrossRefGoogle Scholar
  37. Lobato E, Rouco L, Gomez T, Echavarren FM, Navarrete MI, Casanova R, Lopez G (2004) Preventive analysis and solution of overloads in the Spanish electricity market. ElectrPower Syst Res 68(3):185–192CrossRefGoogle Scholar
  38. Margerum RD (2011) Beyond consensus: improving collaborative planning and management. MIT Press, CambridgeCrossRefGoogle Scholar
  39. Meadows DH (1999) Leverage points: places to intervene in a system Hartland VT. The Sustainability InstituteGoogle Scholar
  40. Mideksa TK, Kallbekken S (2010) The impact of climate change on the electricity market—a review. Energy Policy 38(7):3579–3585CrossRefGoogle Scholar
  41. Mili L (2011) Making the concepts of robustness resilience and sustainability useful tools for power system planning operation and control. 4th International Symposium on Resilient Control SystemsGoogle Scholar
  42. National Research Council (2009) Informing decisions in a changing climate. The National Academies Press, Washington, DCGoogle Scholar
  43. Newport R (1981) Factors influencing the occurrence of bursts in iron water mains. Water Supply Manag 3:274–278Google Scholar
  44. Niemczynowicz J (1999) Urban hydrology and water management—present and future challenges. Urban Water 1(1):1–14CrossRefGoogle Scholar
  45. Ottens M, Franssen M, Kroes P, Van De Poel I (2006) Modelling infrastructures as socio-technical systems. Int J Crit Infrastruct 2(2–3):133–145CrossRefGoogle Scholar
  46. Panzieri S, Setola R, Ulivi G (2004) An agent based simulator for critical interdependent infrastructures. Securing Critical Infrastructures, GrenobleGoogle Scholar
  47. Pederson P, Dudenhoeffer D, Hartley S, Permann M (2006) Critical Infrastructure Interdependency Modeling: a survey of U.S. and International Research. Idaho National Laboratory, USGoogle Scholar
  48. Petrick S, Rehdanz K, Tol RJ (2010) The Impact of Temperature Changes on Residential Energy Consumption. Kiel Working Papers 1618, Kiel Institute for the World EconomyGoogle Scholar
  49. Pryor SC, Barthelmie RJ (2010) Climate change impacts on wind energy: a review. Renew Sustain Energy Rev 14(1):430–437CrossRefGoogle Scholar
  50. Pryor SC, Barthelmie RJ, Kjellstroem E (2005) Potential climate change impact on wind energy resources in northern Europe: analyses using a regional climate model. Clim Dyn 25(7–8):815–835CrossRefGoogle Scholar
  51. Rademaekers K, van der Laan J, Boeve S, Lise W (2011) Investment needs for future adaptation measures in EU nuclear power plants and other electricity generation technologies due to effects of climate change. ECORYS, NetherlandsGoogle Scholar
  52. Rajani B, Kleiner Y (2001) Comprehensive review of structural deterioration of water mains: physically based models. Urban Water 3(3):151–164CrossRefGoogle Scholar
  53. Rajani B, Tesfamariam S (2004) Uncoupled axial flexural and circumferential pipe-soil interaction analyses of partially supported jointed water mains. Can Geotech J 41(6):997–1010CrossRefGoogle Scholar
  54. Rijkswaterstaat (2009) Jaarverslag 2008 en plan 2009–2010: Bureau VeiligheidsbeambteGoogle Scholar
  55. Rosato V, Issacharoff L, Tiriticco F, Meloni S, Porcellinis S, Setola R (2008) Modelling interdependent infrastructures using interacting dynamical models. Int J Crit Infrastruct 4(1/2):63–79CrossRefGoogle Scholar
  56. Rosmuller N, Lievit M, Snelder M, Tonnaeer C (2011) Incidentmanagement en stremmingskosten: vergelijking van een weg- scheepvaart- en spoorincident. Stichting Platform TransportveiligheidGoogle Scholar
  57. Rothstein B, Parey S (2011) Impacts of and adaptation to climate change in the electricity sector in Germany and France. In: Ford JD, Berrang-Ford L (eds) Climate change adaptation in developed nations. Springer, New York, pp 231–241CrossRefGoogle Scholar
  58. Rothstein B, Schroedter-Homscheidt M, Haefner C, Bernhardt S, Mimler S (2008) Impacts of climate change on the electricity sector and possible adaptation measures. In: Economics and Management of Climate Change. New York: Springer, pp 231–241Google Scholar
  59. Simon HA (1962) The Architecture of Complexity. In: Proceedings of the American Philosophical Society, pp 467–482Google Scholar
  60. Simon HA (1973) The organization of complex systems. In: Pattee HH (ed) Hierarchy theory—the challenge of complex systems. Goerge Braziller, New York, pp 1–27Google Scholar
  61. Snelder M (2010) Designing Robust Road Networks: a general design method applied to the Netherlands. T2010/10 TRAIL Research School, the NetherlandsGoogle Scholar
  62. Sterman J (2000) Business dynamics: systems thinking and modeling for a complex world. Irwin/McGraw-Hill, BostonGoogle Scholar
  63. Stern N (2007) The economics of climate change. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  64. Susskind L, Crump L (2009) Multiparty negotiations. Sage, Thousand OaksGoogle Scholar
  65. SWOV (2009) De invloed van het weer op de verkeersveiligheid (the influence of weather on traffic safety). http://www.swov.nl/rapport/Factsheets/NL/Factsheet_Invloed_van_het_weer.pdf. Accessed July 2012
  66. Transportation Research Board (2008) Potential impacts of climate change on US transportation. The National Academies Press, Washington, DCGoogle Scholar
  67. Tzimas E (2011) Sustainable or not? Impacts and Uncertainties of Low-carbon Technologies on Water’ presentation at AAAS February 2011 European Commission—Joint Research Centre Institute for Energy mimeoGoogle Scholar
  68. Van Daal K, Blokker M, Holzhaus P, Hendrikx D (2008) Storingen als early warning system voor conditie van leidingnetten H2O(19):95–97Google Scholar
  69. Van Vliet MTH, Yearsley JR, Ludwig F, Vgele S, Lettenmaier DP, Kabat P (2012) Vulnerability of US and European electricity supply to climate change. Nat Clim Chang 2(9):676–681Google Scholar
  70. Vreeburg JHG, Blokker EJM, Horst P, Van Dijk JC (2009) Velocity-based self-cleaning residential drinking water distribution systems. Water Science & Technology: Water Supply—WSTWS 9(6): 635–641Google Scholar
  71. Webb J (2011) Making climate change governable: the case of the UK climate change risk assessment and adaptation. Plan Sci Public Policy 38(4):279–292CrossRefGoogle Scholar
  72. Wilbanks TJ, Bhatt V, Bilello DE, Bull SR, Ekmann J, Horak WC, Huang YJ, Levine MD, Sale MJ, Schmalzer DK, Scott MJ (2008) Effects of climate change on energy production and use in the United States. US Climate Change Science Program, Washington, DCGoogle Scholar
  73. Williams BK, Szaro RC, Shapiro CD (2009) Adaptive management: the US department of the interior technical guide. US Department of the Interior, Washington, DCGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • L. A. Bollinger
    • 1
  • C. W. J. Bogmans
    • 2
  • E. J. L. Chappin
    • 1
  • G. P. J. Dijkema
    • 1
  • J. N. Huibregtse
    • 3
  • N. Maas
    • 3
  • T. Schenk
    • 4
  • M. Snelder
    • 1
    • 3
  • P. van Thienen
    • 5
  • S. de Wit
    • 3
  • B. Wols
    • 5
  • L. A. Tavasszy
    • 1
    • 3
  1. 1.Faculty of TPMDelft University of TechnologyDelftThe Netherlands
  2. 2.VU University AmsterdamAmsterdamThe Netherlands
  3. 3.TNODelftThe Netherlands
  4. 4.Massachusetts Institute of TechnologyCambridgeUSA
  5. 5.KWR Watercycle Research InstituteNieuwegeinThe Netherlands

Personalised recommendations