Regional Environmental Change

, Volume 13, Issue 6, pp 1157–1169 | Cite as

Drastic reduction in the potential habitats for alpine and subalpine vegetation in the Pyrenees due to twenty-first-century climate change

  • Nora Pérez-García
  • Xavier Font
  • Albert Ferré
  • Jordi Carreras
Original Article

Abstract

Recent climate change is already affecting both ecosystems and the organisms that inhabit them, with mountains and their associated biota being particularly vulnerable. Due to the high conservation value of mountain ecosystems, reliable science-based information is needed to implement additional conservation efforts in order to ensure their future. This paper examines how climate change might impact on the distribution of the main alpine and subalpine vegetation in terms of losses of suitable area in the Oriental Pyrenees. The algorithm of maximum entropy (Maxent) was used to relate current environmental conditions (climate, topography, geological properties) to present data for the studied vegetation units, and time and space projections were subsequently carried out considering climate change predictions for the years 2020, 2050 and 2080. All models predicted rising altitude trends for all studied vegetation units. Moreover, the analysis of future trends under different climate scenarios for 2080 suggests an average loss in potential ranges of 92.3–99.9 % for alpine grasslands, 76.8–98.4 % for subalpine (and alpine) scrublands and 68.8–96.1 % for subalpine forest. The drastic reduction in the potential distribution areas for alpine grasslands, subalpine scrublands and Pinus uncinata forests highlights the potential severity of the effects of climate change on vegetation in the highest regions of the Pyrenees. Thus, alpine grasslands can be expected to become relegated to refuge areas (summit areas), with their current range being taken over by subalpine scrublands. Furthermore, subalpine forest units will probably become displaced and will occupy areas that currently present subalpine scrub vegetation.

Keywords

Alpine grasslands Climate change Maxent Pinus uncinata forest Pyrenees Subalpine shrubs 

Supplementary material

10113_2013_427_MOESM1_ESM.doc (2.3 mb)
Supplementary material 1 (DOC 2,350 kb)

References

  1. Bakkenes M, Alkemade JRM, Ihle F, Leemans R, Latour B (2002) Assessing effects of forecasted climate change on the diversity and distribution of European higher plants for 2050. Glob Change Biol 8:390–407CrossRefGoogle Scholar
  2. Beniston M (2000) Environmental change in mountains and uplands. Arnold/Hodder and Stoughton: Chapman and Hall Publishers, LondonGoogle Scholar
  3. Beniston M, Fox DG, Adhikary S, Andressen R, Guisan A, Holten J, Innes J, Maitima J, Price M, Tessier L (1996) The impacts of climate change on mountain regions. Second assessment report of the intergovernmental panel on climate change (IPCC), Chapter 5. Cambridge University Press, Cambridge, pp 191–213Google Scholar
  4. Benito Garzón M, Sánchez de Dios R, Saiz Ollero H (2008) Effects of climate change on the distribution of Iberian tree species. Appl Veg Sci 11:169–178CrossRefGoogle Scholar
  5. Benito B, Lorite J, Peñas J (2011) Simulating potential effects of climatic warming on altitudinal patterns of key species in mediterranean-alpine ecosystems. Clim Change 108:471–483CrossRefGoogle Scholar
  6. Bolliger J, Kienast F, Zimmermann NE (2000) Risks of global warming on montane and subalpine forest in Switzerland—a modeling study. Reg Environ Change 1:99–111CrossRefGoogle Scholar
  7. Botkin DB, Saxe H, Araujo MB et al (2007) Forecasting the effects of global warming on biodiversity. Bioscience 57:227–236CrossRefGoogle Scholar
  8. Braun-Blanquet J (1948) La vegetation alpine des Pyrérées Orientales. CSIC, BarcelonaGoogle Scholar
  9. Carreras J, Carrillo E, Ferré A, Ninot JM (2003) Mapa digital dels Habitats d’Andorra 1:25,000, [CD-Rom]. Centre de Biodiversitat, Institut d’Estudis Andorrans. Available from: http://www.iea.ad/
  10. Carrillo E, Ninot JM (1992) Flora i Vegetació de les valls d’Espot i de Boí, 2. Arch Secc Cienc 99:1–350Google Scholar
  11. Carson DJ (1999) Climate modelling: achievements and prospect. Q J R Meteorol Soc 125:1–27CrossRefGoogle Scholar
  12. Castro J, Zamora R, Hódar JA, Gómez JM, Gómez-Aparicio L (2004) Benefits of using shrubs as nurse plants for reforestation in Mediterranean mountains: a 4-year study. Restor Ecol 12(3):352–358CrossRefGoogle Scholar
  13. Dirnböck T, Dullinger S, Grabherr G (2003) A regional impact assessment of climate and land-use change on alpine vegetation. J Biogeogr 30:401–417CrossRefGoogle Scholar
  14. Dirnböck T, Essl F, Rabitsch W (2011) Disproportional risk for habitat loss of high-altitude endemic species under climate change. Glob Change Biol 17:990–996CrossRefGoogle Scholar
  15. Elith J, Graham CH, Anderson RP et al (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–151CrossRefGoogle Scholar
  16. Engler R, Randin CF, Vittoz P, Czáka T, Beniston M, Zimmermann NE, Guisan A (2009) Predicting future distributions of mountain plants under climate change: does dispersal capacity matter? Ecography 32:34–45CrossRefGoogle Scholar
  17. Engler R, Randin CF, Thuiller W et al (2011) 21st century climate change threatens mountain flora unequally across Europe. Glob Change Biol 17:2330–2341. doi:10.1111/j.1365-2486.2010.02393.x CrossRefGoogle Scholar
  18. Erschbamer B (2001) Responses of some Austrian glacier foreland plants to experimentally changed microclimatic conditions. In: Walther GR, Burga CA, Edwards PJ (eds) Fingerprints of climate change. Adapted behavior and shifting species range. Kluwer, New York, pp 263–279CrossRefGoogle Scholar
  19. ESRI (2009) ArcGIS 9.3. Environmental Systems Research Institute, Redlands, California, USGoogle Scholar
  20. Ferrier S, Guisan A (2006) Spatial modelling of biodiversity at the community level. J Appl Ecol 43:393–404CrossRefGoogle Scholar
  21. Fielding AH, Bell JF (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv 24:38–49CrossRefGoogle Scholar
  22. Fitzpatrick MC, Gove AD, Sanders NJ, Dunn RR (2008) Climate change, plant migration, and range collapse in a global biodiversity hotspot: the Banksia (Proteaceae) of Western Australia. Glob Change Biol 14:1–16CrossRefGoogle Scholar
  23. Gaston KJ (2003) The structure and dynamics of geographic ranges. Oxford University Press, OxfordGoogle Scholar
  24. Grabherr G, Gottfried M, Pauli H (1994) Climate effects on mountain plants. Nature 369:448CrossRefGoogle Scholar
  25. Gritti ES, Smith B, Sykes MT (2005) Vulnerability of Mediterranean Basin ecosystems to climate change and invasion by exotic plant species. J Biogeogr 33:145–157CrossRefGoogle Scholar
  26. Guisan A, Rahbek C (2011) SESAM—a new framework integrating macroecological and species distribution models for predicting spatio-temporal patterns of species assemblages. J Biogeogr 38:1433–1444CrossRefGoogle Scholar
  27. Guisan A, Thuiller W (2005) Predicting species distribution: offering more than simple habitat models. Ecol Lett 8:993–1009CrossRefGoogle Scholar
  28. Guisan A, Zimmermann NE (2000) Predictive habitat distribution models in ecology. Ecol Model 135:147–186CrossRefGoogle Scholar
  29. Hanley JA, McNeil BJ (1982) The meaning and use of the area under a receiver operating characteristic (Roc) curve. Radiology 143:29–36Google Scholar
  30. Hernandez PA, Graham CH, Master LL, Albert DL (2006) The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography 29:773–785CrossRefGoogle Scholar
  31. Hijmans RJ, Graham CH (2006) The ability of climate envelope models to predict the effect of climate change on species distributions. Glob Change Biol 12:2272–2281CrossRefGoogle Scholar
  32. Hijmans RJ, Cameron S, Parra J, Jones P, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978CrossRefGoogle Scholar
  33. Institut Cartogràfic de Catalunya (ICC) (1996) Mapa Geològic de Catalunya 1:250,000. Institut Cartogràfic de Catalunya, Departament de Política Territorial i Obres Públiques, Generalitat de Catalunya, Barcelona, SpainGoogle Scholar
  34. Institut Cartogràfic de Catalunya (ICC) (2010) Base topogràfica de Catalunya 1:50,000. Institut Cartogràfic de Catalunya, Departament de Política Territorial i Obres Públicas, Generalitat de Catalunya. Barcelona, SpainGoogle Scholar
  35. IPCC (2007) Climate change 2007: the physical science basis. In: Solomon S et al (eds) Contribution of Working Group I to the Fourth Assessment. Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  36. Jalas J, Suominen J (1972-1996) Atlas Florae Europaeae. The Committee for Mapping the Flora of Europe and Societas Biologica Fennica Vanamo, Helsinki, FIGoogle Scholar
  37. Jiménez-Valverde A, Lobo JM (2007) Threshold criteria for conversion of probability of species presence to either-or presence-absence. Acta Oecol 31:361–369CrossRefGoogle Scholar
  38. Körner C (2003) Alpine plant life, 2nd edn. Springer, BerlinCrossRefGoogle Scholar
  39. Kullman L (2002) Rapid recent range-margin rise of tree and shrub species in the Swedish Scandes. J Ecol 90(1):68–77CrossRefGoogle Scholar
  40. Liu C, Berry PM, Dawson TP, Pearson RG (2005) Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28:385–393CrossRefGoogle Scholar
  41. Manel S, Williams HC, Ormeod SJ (2001) Evaluating presence-absence models in ecology: the need to account for prevalence. J Appl Ecol 38:921–931CrossRefGoogle Scholar
  42. Mitchell TD, Jones PD (2005) An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int J Climatol 25:693–712CrossRefGoogle Scholar
  43. Mitchell TD, Carter TR, Jones PD, Hulme M, New M (2004) A comprehensive set of high-resolution grids of monthly climate for Europe and the globe: the observed record (1901–2000) and 16 Scenarios (2001–2100). Tyndall Centre for Climate Change Res. [Working Paper 55], Norwich, UKGoogle Scholar
  44. Nakicenovic N, Swart R (2000) Emission scenarios. Special report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  45. Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol S 37:637–669CrossRefGoogle Scholar
  46. Pauli H, Gottfried M, Grabherr G (2001) High summits of the Alps in a changing climate. The oldest observation series on high mountain plant diversity in Europe. In: Walther GR, Burga CA, Edwards PJ (eds) Fingerprints of climate change. Adapted behaviour and shifting species range. Kluwer, New York, pp 139–149CrossRefGoogle Scholar
  47. Pauli H, Gottfried M, Reiter K, Klettner C, Grabherr G (2007) Signals of range expansions and contractions of vascular plants in the high Alps: observations (1994–2004) at the GLORIA master site Schrankogel, Tyrol, Austria. Glob Change Biol 13:147–156CrossRefGoogle Scholar
  48. Pausas JG, Carreras J, Ferré A, Font X (2003) Coarse-scale plant species richness in relation to environmental heterogeneity. J Veg Sci 14:661–668CrossRefGoogle Scholar
  49. Peñuelas J, Boada M (2003) A global change-induced biome shift in the Montseny Mountains (NE Spain). Glob Change Biol 9:131–140CrossRefGoogle Scholar
  50. Peterson AT, Papeş M, Eaton M (2007) Transferability and model evaluation in ecological niche modeling: a comparison of GARP and Maxent. Ecography 30:550–560Google Scholar
  51. Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–256CrossRefGoogle Scholar
  52. Phillips SJ, Dudik M, Elith J et al (2009) Sample selection bias and presence-only models of species distributions: implications for selection of background and pseudo-absences. Ecol Appl 19:181–197CrossRefGoogle Scholar
  53. Rosenzweig C, Karoly D, Vicarelli M et al (2008) Attributing physical and biological impacts to anthropogenic climate change. Nature 453:353–357CrossRefGoogle Scholar
  54. Sanz-Elorza M, Dana ED, Gonzalez A (2003) Changes in the high mountain vegetation of the central Iberian Peninsula as a probable signo f global warming. Ann Bot 92:1–8CrossRefGoogle Scholar
  55. Shaw MR, Loik ME, Harte J (2000) Gas exchange and water relations of two Rocky Mountain shrub species exposed to a climate change manipulation. Plant Ecol 146:197–206CrossRefGoogle Scholar
  56. Theurillat JP, Guisan A (2001) Potential impact of climate change on vegetation in the European Alps: a review. Clim Change 50:77–109CrossRefGoogle Scholar
  57. Thomas CD, Cameron A, Green R et al (2004) Extinction risk from climate change. Nature 427:145–148CrossRefGoogle Scholar
  58. Thuiller W, Lavorel S, Araújo MB, Sykes MT, Prentice IC (2005) Climate change threats to plant diversity in Europe. P Natl Acad Sci 102:8245–8250CrossRefGoogle Scholar
  59. Vigo J, Carreras J, Ferré A (2006) Cartografia dels hàbitats a Catalunya. Manual d’interpretació. Generalitat de Catalunya, Departament de Medi Ambient i Habitatge, Barcelona. Available from: http://www.ub.edu/geoveg/en/semhaveg.php
  60. Viviroli D, Weingartner R (2004) Hydrological significance of mountains: from regional to global scale. Hydrological earth systems. Science 8:1016–1029Google Scholar
  61. Walther GR, Post E, Convey P et al (2002) Ecological responses to recent climate change. Nature 416:389–395CrossRefGoogle Scholar
  62. Walther GR, Beissner S, Burga CA (2005) Trends in the upward shift of alpine plants. J Veg Sci 16:541–548CrossRefGoogle Scholar
  63. Wardle P, Coleman MC (1992) Evidence for rising upper limits of 4 native New-Zealand forest trees. New Zeal J Bot 30(3):303–314CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Nora Pérez-García
    • 1
  • Xavier Font
    • 1
  • Albert Ferré
    • 1
  • Jordi Carreras
    • 1
  1. 1.Department of Plant BiologyUniversity of BarcelonaBarcelonaSpain

Personalised recommendations