Regional Environmental Change

, Volume 14, Issue 5, pp 1811–1823 | Cite as

Testing instrumental and downscaled reanalysis time series for temperature trends in NE of Spain in the last century

  • M. TurcoEmail author
  • R. Marcos
  • P. Quintana-Seguí
  • M. C. Llasat
Original Article


In the context of climatic temperature studies, more often than not a time series is affected by artificial inhomogeneities. To overcome such limitation, we propose a new simple methodology in which promising results point not only toward the detection of unknown inhomogeneous periods but also toward the possibility of reconstructing the uncertain portion of the series. It is based on a parsimonious statistical downscaling (Multiple Linear Regression) of the large-scale 20CR reanalysis data. This method is successfully applied upon two long-range temperature series from a couple of centennial observatories (Ebre and Fabra, NE of Spain) which do not have nearby suitable temperature series to compare with. Results of trend analysis point to a clear signal of warming, with a larger rate of increase for the maximum temperature (respect to the minimum one), for the more recent decades (respect to the whole available period), and for the original series (respect to the reconstructed ones).


Statistical downscaling Inhomogeneities Multiple linear regression Series reconstruction 



This work was supported by esTcena project (Exp. 200800050084078), a strategic action from Plan Nacional de I+D+i 2008–2011 funded by the Spanish Ministry of Medio Ambiente y Medio Rural y Marino. We are most grateful to AEMET, the Ebre Observatory and the Reial Academia de Ciències i Arts de Barcelona for the data and metadata support. Special thanks to Dr. Prohom, Dr. van der Schrier and Mr. Solé for their helpful discussions on the matter.


  1. Aguilar E, Auer I, Brunet M, Peterson TC, Wieringa J (2003) Guidelines on climate metadata and homogenization. Technical report WMO/TD–no. 118, WMOGoogle Scholar
  2. Alexandersson H (1986) A homogeneity test applied to precipitation data. J Climatol 6(6):661–675CrossRefGoogle Scholar
  3. Benestad R, Hanssen-Bauer I, Chen D (2008) Empirical-statistical downscaling. World Scientific Publishers, SingaporeCrossRefGoogle Scholar
  4. Bengtsson L, Hagemann S, Hodges KI (2004) Can climate trends be calculated from reanalysis data? J Geophys Res 109(D11):1–8Google Scholar
  5. Brohan P, Kennedy J, Harris I, Tett S, Jones P (2006) Uncertainty estimates in regional and global observed temperature changes: a new dataset from 1850. J Geophys Res 111(D12106):1–21. doi: 10.1029/2005JD006548 Google Scholar
  6. Brunet M, Jones PD, Sigró J, Saladié O, Aguilar E, Moberg A, Della-Marta PM, Lister D, Walther A, López D (2007) Temporal and spatial temperature variability and change over Spain during 1850–2005. J Geophys Res 112(D12):1–28Google Scholar
  7. Buishand T (1982) Some methods for testing homogeneity of rainfall records. J Hydrol 58:11–27CrossRefGoogle Scholar
  8. Calmanti S, Motta L, Turco M, Provenzale A (2007) Impact of climate variability on alpine glaciers in northwestern Italy. Int J Climatol 27(15):2041–2053CrossRefGoogle Scholar
  9. Compo GP, Whitaker JS, Sardeshmukh PD (2006) Feasibility of a 100-year reanalysis using only surface pressure data. Bull Am Meteorol Soc 87(2):175CrossRefGoogle Scholar
  10. Compo GP, Whitaker JS, Sardeshmukh PD, Matsui N, Allan RJ, Yin X, Gleason BE, Vose RS, Rutledge G, Bessemoulin P, Brönnimann S, Brunet M, Crouthamel RI, Grant AN, Groisman PY, Jones PD, Kruk MC, Kruger AC, Marshall GJ, Maugeri M, Mok HY, Nordli Ø, Ross TF, Trigo RM, Wang XL, Woodruff SD, Worley SJ (2011) The twentieth century reanalysis project. Q J R Meteorol Soc 137(654):1–28CrossRefGoogle Scholar
  11. Conrad V, Pollak LW (1950) Methods in climatology. Harvard University Press, Cambridge, p 459CrossRefGoogle Scholar
  12. Curto JJ, Also E, Pallé E, Solé JG (2009) Sunshine and synoptic cloud observations at Ebro Observatory, 1910–2006. Int J Climatol 29(14):2183–2190CrossRefGoogle Scholar
  13. Dee DP, Källén E, Simmons AJ, Haimberger L (2011) Comments on reanalyses suitable for characterizing long-term trends. Bull Am Meteorol Soc 92(1):65–70CrossRefGoogle Scholar
  14. Ducré-Robitaille J-F, Vincent LA, Boulet G (2003) Comparison of techniques for detection of discontinuities in temperature series. Int J Climatol 23(9):1087–1101CrossRefGoogle Scholar
  15. Efthymiadis D, Goodess CM, Jones PD (2011) Trends in Mediterranean gridded temperature extremes and large-scale circulation influences. Nat Hazards Earth Syst Sci 11(8):2199–2214CrossRefGoogle Scholar
  16. Fall S, Niyogi D, Gluhovsky A, Pielke RA, Kalnay E, Rochon G (2010) Impacts of land use land cover on temperature trends over the continental United States: assessment using the North American Regional Reanalysis. Int J Climatol 30(13):1980–1993CrossRefGoogle Scholar
  17. Ferguson CR, Villarini G (2012) Detecting inhomogeneities in the Twentieth Century Reanalysis over the central United States. J Geophys Res 117(D05123):1–11Google Scholar
  18. Fowler HJ, Blenkinsop S, Tebaldi C (2007) Linking climate change modelling to impacts studies: recent advances in downscaling techniques for hydrological modelling. Int J Climatol 27(12):1547–1578, General Assembly of the European-Geosciences-Union, Vienna, Austria, APR, 2006Google Scholar
  19. Franke J, González-Rouco JF, Frank D, Graham NE (2010) 200 years of European temperature variability: insights from and tests of the proxy surrogate reconstruction analog method. Clim Dyn 37(1–2):133–150Google Scholar
  20. Graham NE, Hughes MK, Ammann CM, Cobb KM, Hoerling MP, Kennett DJ, Kennett JP, Rein B, Stott L, Wigand PE, Xu T (2007) Tropical Pacific–Mid-Latitude teleconnections in medieval times. Clim Chang 83(1–2):241–285CrossRefGoogle Scholar
  21. Haimberger L (2007) Homogenization of radiosonde temperature time series using innovation statistics. J Clim 20(7):1377–1403CrossRefGoogle Scholar
  22. Huth R (1999) Statistical downscaling in central Europe: evaluation of methods and potential predictors. Clim Res 13:91–101CrossRefGoogle Scholar
  23. Huth R (2002) Statistical downscaling of daily temperature in central Europe. J Clim 15(13):1731–1742CrossRefGoogle Scholar
  24. Kalnay E, Cai M (2003) Impact of urbanization and land-use change on climate. Nature 423(6939):528–531CrossRefGoogle Scholar
  25. Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Leetmaa A, Reynolds R, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77(3):437–471CrossRefGoogle Scholar
  26. Kalnay E, Cai M, Li H, Tobin J (2006) Estimation of the impact of land-surface forcings on temperature trends in eastern United States. J Geophys Res 111(D6):1–13Google Scholar
  27. Klok EJ, Klein Tank AMG (2009) Updated and extended european dataset of daily climate observations. Int J Climatol 29(8):1182–1191CrossRefGoogle Scholar
  28. Llebot J (2010) El canvi Climàtic a Catalunya. 2n informe del grup d'experts en canvi climátic de Catalunya. Generalitat de Catalunya, pp 1–32Google Scholar
  29. Maraun D, Wetterhall F, Ireson AM, Chandler RE, Kendon EJ, Widmann M, Brienen S, Rust HW, Sauter T, Themessl M, Venema VKC, Chun KP, Goodess CM, Jones RG, Onof C, Vrac M, Thiele-Eich I (2010) Precipitation downscaling under climate change: recent developments to bridge the gap between dynamical downscaling models and the end user. Rev Geophys 48:1–34Google Scholar
  30. Menne MJ, Williams CN (2009) Homogenization of temperature series via pairwise comparisons. J Clim 22(7):1700–1717CrossRefGoogle Scholar
  31. Onogi K, Tsutsui J, Koide H, Sakamoto M, Kobayashi S, Hatsushika H, Matsumoto T, Yamazaki N, Kamahori H, Takahashi K, Kadokura S, Wada K, Kato K, Oyama R, Ose T, Mannoji N, Taira R (2007) The JRA-25 reanalysis. J Meteorol Soc Jpn 85(3):369–432CrossRefGoogle Scholar
  32. Peterson TC, Easterling DR, Karl TR, Groisman P, Nicholls N, Plummer N, Torok S, Auer I, Boehm R, Gullett D, Vincent L, Heino R, Tuomenvirta H, Mestre O, Szentimrey T, Salinger J, FØrland , Hanssen-Bauer I, Alexandersson H, Jones P, Parker D (1998) Homogeneity adjustments of in situ atmospheric climate data: a review. Int J Climatol 18(13):1493–1517CrossRefGoogle Scholar
  33. Pettitt A (1979) A non-parametric approach to the change-point detection. Appl Stat 28:126–135CrossRefGoogle Scholar
  34. Pielke R, Nielsen-Gammon J, Davey C, Angel J, Bliss O, Doesken N, Cai M, Fall S, Niyogi D, Gallo K, Hale R, Hubbard KG, Lin X, Li H, Raman S (2007a) Documentation of Uncertainties and biases associated with surface temperature measurement sites for climate change assessment. Bull Am Meteorol Soc 88(6):913CrossRefGoogle Scholar
  35. Pielke RA, Davey CA, Niyogi D, Fall S, Steinweg-Woods J, Hubbard K, Lin X, Cai M, Lim Y-K, Li H, Nielsen-Gammon J, Gallo K, Hale R, Mahmood R, Foster S, McNider RT, Blanken P (2007b) Unresolved issues with the assessment of multidecadal global land surface temperature trends. J Geophys Res 112(D24):1–26Google Scholar
  36. Prohom M, Herrero M (2008) Towards the creation of a climatic database for Catalonia (18th to 21st centuries). Tethys J Weather Clim West Mediterr 5:3–11Google Scholar
  37. Prohom Duran MJ, Puertas Castro A, Gázquez Picó A (2009) La sèrie de temperatura de l’Observatori Fabra (1913–2008): Anàlisi de qualitat, homogeneïtat i tendències. In: XV Jornades de Meteorologia Eduard Fontserè, pp 41–50Google Scholar
  38. Reeves J, Chen J, Wang XL, Lund R, Lu QQ (2007) A review and comparison of changepoint detection techniques for climate data. J Appl Meteorol Climatol 46(6):900–915CrossRefGoogle Scholar
  39. Seguí-Grau J (2003) Análisis de la Serie de Temperatura del Observatorio del Ebro (1894–2002). Technical report, Observatori de l’Ebre, Roquetes (Tarragona)Google Scholar
  40. Sturaro G (2003) A closer look at the climatological discontinuities present in the NCEP/NCAR reanalysis temperature due to the introduction of satellite data. Clim Dyn 21(3–4):309–316CrossRefGoogle Scholar
  41. Timbal B, Dufour A, McAvaney B (2003) An estimate of future climate change for western france using a statistical downscaling technique. Clim Dyn 20(7–8):807–823Google Scholar
  42. Timbal B, Fernandez E, Li Z (2009) Generalization of a statistical downscaling model to provide local climate change projections for Australia. Environ Model Softw 24(3):341–358CrossRefGoogle Scholar
  43. Toreti A, Kuglitsch FG, Xoplaki E, Della-Marta PM, Aguilar E, Prohom M, Luterbacher J (2010) A note on the use of the standard normal homogeneity test to detect inhomogeneities in climatic time series. Int J Climatol 31(4):630–632Google Scholar
  44. Uppala S, P Kallberg, Simmons A, Andrae U, Bechtold V, Fiorino M, Gibson J, Haseler J, Hernandez A, Kelly G, Li X, Onogi K, Saarinen S, Sokka N, Allan R, Andersson E, Arpe K, Balmaseda M, Beljaars A, VanDe Berg L, Bidlot J, Bormann N, Caires S, Chevallier F, Dethof A, Dragosavac M, Fisher M, Fuentes M, Hagemann S, Holm E, Hoskins B, Isaksen L, Janssen P, Jenne R, McNally A, Mahfouf J, Morcrette J, Rayner N, Saunders R, Simon P, Sterl A, Trenberth K, Untch A, Vasiljevic , Viterbo P, Woollen J (2005) The ERA-40 re-analysis. Q J R Meteorol Soc 131(612, Part B):2961–3012CrossRefGoogle Scholar
  45. Vincent La (1998) A technique for the identification of inhomogeneities in Canadian temperature series. J Clim 11(5):1094–1104CrossRefGoogle Scholar
  46. Von Neumann J (1941) Distribution of the ratio of the mean square successive difference to the variance. Ann Math Stat 13:367–395CrossRefGoogle Scholar
  47. Von Storch H, Zwiers FW (1999) Statistical analysis in climate research. Cambridge University Press, CambridgeGoogle Scholar
  48. Wijngaard J, Klein Tank A, Können G (2003) Homogeneity of 20th century European daily temperature and precipitation series. Int J Climatol 23(6):679–692CrossRefGoogle Scholar
  49. Wilby R, Charles S, Zorita E, Timbal B (2004) Guidelines for use of climate scenarios developed from statistical downscaling methods. Technical report, IPCCGoogle Scholar
  50. Wilks DS (2006) Statistical methods in the atmospheric sciences. Academic Press, Burlington, p 627Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • M. Turco
    • 1
    • 2
    Email author
  • R. Marcos
    • 1
  • P. Quintana-Seguí
    • 3
  • M. C. Llasat
    • 1
  1. 1.GAMA (Meteorological Hazards Analysis Team), Department of Astronomy Meteorology, Faculty of PhysicsUniversity of BarcelonaBarcelonaSpain
  2. 2.Impact on Soil and Coast DivisionEuro-Mediterranean Centre on Climate ChangeLecceItaly
  3. 3.Observatori de l’Ebre (Universitat Ramon Llull—CSIC)RoquetesSpain

Personalised recommendations