Advertisement

Regional Environmental Change

, Volume 14, Supplement 1, pp 5–17 | Cite as

The impact of climate change on mediterranean intertidal communities: losses in coastal ecosystem integrity and services

  • Gianluca SaràEmail author
  • Martina Milanese
  • Ivana Prusina
  • Antonio Sarà
  • Dror L. Angel
  • Branko Glamuzina
  • Tali Nitzan
  • Shirra Freeman
  • Alessandro Rinaldi
  • Valeria Palmeri
  • Valeria Montalto
  • Marco Lo Martire
  • Paola Gianguzza
  • Vincenzo Arizza
  • Sabrina Lo Brutto
  • Maurizio De Pirro
  • Brian Helmuth
  • Jason Murray
  • Stefano De Cantis
  • Gray A. Williams
Original Article

Abstract

As has been shown for other ecosystems, the ecological and socio-economic impacts of climate change on Mediterranean intertidal habitats are highly variable in space and time. We conducted field and laboratory measurements of cellular, ecophysiological and behavioural responses of selected intertidal invertebrates (mussels, gastropods and sponges) and completed a literature review to determine what is known of socio-economic consequences of these biological changes. Results suggest significant gaps in our knowledge that may impede a complete understanding of likely impacts (physical, biological and socio-economic) and that sufficient data for such an analysis are available only for mussels. Application of ecological models for native mussels Mytilaster minimus and invasive Brachidontes pharaonis bivalves indicates that the current distribution of these species is linked to the availability of food and local temperature. Choosing Israel as a case study, the study focused on the identification of ecosystem services and goods provided by the Mediterranean rocky intertidal and on the assessment of conservation approaches. Intertidal systems were poorly represented in the socio-economic literature, and there was low awareness of the value of these ecosystems among stakeholders. Subsequently, conservation efforts for intertidal communities were minimal. While climate change will very likely continue to impact these systems, our predictive capacity for the extent and locations of such impacts, and of any derived socio-economic consequences, remains limited.

Keywords

Intertidal Bioenergetic mechanistic modelling Ecophysiology Ecosystem services Climate change Invasive species Mediterranean Sea 

Notes

Acknowledgments

This paper has been inspired and sustained by INTERMED, one of the CIRCLE Med projects funded by the French Ministry of Ecology, Energy, Sustainable Development and Territorial Planning, the Regional Ministry of Innovation and Industry of the Galician Government, the Ministry of Environment Protection of Israel, the Italian Ministry for Environment, Land and Sea, and the Foundation for Science and Technology of Portugal, in the framework of Circle ERA Net project (which is funded by the European Commission 6th Framework Programme). We thank and are especially grateful to all collaborators and students from all laboratories and teams involved in this project.

References

  1. Aburto-Oropeza O, Ezcurra E, Danemann G, Valdez V, Murray J, Sala E (2008) Mangroves in the Gulf of California increase fishery yields. Proc Natl Acad Sci USA 105:10456–10459CrossRefGoogle Scholar
  2. Barbier EB (2000) Valuing the environment as an input: review of applications to mangrove-fishery linkages. Ecol Econ 35:47–61CrossRefGoogle Scholar
  3. Barbier EB, Hacker SD, Kennedy CE, Koch W, Stier AC, Silliman BR (2011) The value of estuarine and coastal ecosystem services. Ecol Monogr 81:169–193CrossRefGoogle Scholar
  4. Bell JJ (2008) The functional roles of marine sponges. Estuar Coast Shelf Sci 79:341–353CrossRefGoogle Scholar
  5. Cerrano C, Bavestrello G, Bianchi CN, Cattaneo-Vietti R, Bava S, Morganti C, Morri C, Picco P, Sara G, Schiaparelli S, Siccardi A, Sponga F (2000) A catastrophic mass-mortality episode of gorgonians and other organisms in the Ligurian Sea (North-western Mediterranean), summer 1999. Ecol Lett 3:284–293CrossRefGoogle Scholar
  6. Chemello R, Silenzi S (2011) Vermetid reefs in the Mediterranean Sea as archives of sea-level and surface temperature changes. Chem Ecol 27:121–127CrossRefGoogle Scholar
  7. Depledge MH, Andersen BB (1990) A computer-aided physiological monitoring system for continuous, long-term recording of cardiac activity in selected invertebrates. Comp Biochem Physiol 96:473–477CrossRefGoogle Scholar
  8. Doney SC, Ruckelshaus M, Duffy JE, Barry JP, Chan F, English CA, Galindo HM, Grebmeier JM, Hollowed AB, Knowlton N, Polovina J, Rabalais NN, Sydeman WJ, Talley LD (2012) Climate change impacts on marine ecosystems. Ann Rev Mar Sci 4:11–37CrossRefGoogle Scholar
  9. Dong YW, Williams GA (2011) Variations in cardiac performance and heat-shock protein expression to thermal stress in two differently zoned limpets on a tropical rocky shore. Mar Biol 158:1223–1231CrossRefGoogle Scholar
  10. Ezgeta-Balic D, Rinaldi A, Peharda M, Prusina I, Montalto V, Niceta N, Sarà G (2011) An energy budget of the subtidal bivalve, Modiolus barbatus (Mollusca) at different temperatures. Mar Environ Res 71:79–85CrossRefGoogle Scholar
  11. Fanelli G, Portacci G, Boero F (2003) Patches of Chondrilla nucula: high-biodiversity spots within low-biodiversity barrens. In: Proceedings of the 38th European marine biology symposium, Aveiro, September 8–12 2003, abstract book: 115–116Google Scholar
  12. Garrabou J, Coma R, Bensoussan N, Bally M, Chevaldonne P, Cigliano M et al (2009) Mass mortality in Northwestern Mediterranean rocky benthic communities: effects of the 2003 heat wave. Glob Change Biol 15:1090–1103CrossRefGoogle Scholar
  13. Hall D, Hall J, Murray S (2002) Contingent valuation of marine protected areas: Southern California Rocky intertidal ecosystems. Nat Resour Model 15:3Google Scholar
  14. Halpin PM, Sorte CJ, Hofmann GE, Menge BA (2002) Patterns of variation in levels of Hsp70 in natural rocky shore populations from microscales to mesoscales. Integr Comp 42:815–824CrossRefGoogle Scholar
  15. Harley CDG, Hughes AR, Hultgren K, Miner BG, Sorte CJB, Thornber CS, Rodriguez LF, Tomanek L, Williams SL (2006) The impacts of climate change in coastal marine systems. Ecol Lett 9:228–241CrossRefGoogle Scholar
  16. Helmuth BST (1998) Intertidal mussel microclimates: predicting the body temperature of a sessile invertebrate. Ecol Monogr 68:51–74CrossRefGoogle Scholar
  17. Helmuth BST (1999) Thermal biology of rocky intertidal mussels: quantifying body temperatures using climatological data. Ecology 80:15–34CrossRefGoogle Scholar
  18. Helmuth BST, Harley CDG, Halpin P, O’Donnell M, Hofmann GE, Blanchette C (2002) Climate change and latitudinal patterns of intertidal thermal stress. Science 298:1015–1017CrossRefGoogle Scholar
  19. Helmuth BST, Mieszkowska N, Moore P, Hawkins SJ (2006) Living on the edge of two changing worlds: forecasting the response of rocky intertidal ecosystems to climate change. Annu Rev Ecol Evol Syst 37:373–404CrossRefGoogle Scholar
  20. Helmuth BST, Broitman BR, Yamane L, Gilman SE, Mach K, Mislan KAS, Denny MW (2009) Organismal climatology: analyzing environmental variability at scales relevant to physiological stress. J Exp Biol 213:995–1003CrossRefGoogle Scholar
  21. Herr D, Galland GR (2009) The ocean and climate change. Tools and guidelines for action. IUCN, GlandGoogle Scholar
  22. IPCC (2007) Climate change 2007 contribution of working groups I, II and III to the fourth assessment report of the intergovernmental panel on climate change core writing team. In: Pachauri RK, Reisinger A (eds) IPCC, Geneva, SwitzerlandGoogle Scholar
  23. Jones SJ, Lima FP, Wethey DS (2010) Rising environmental temperatures and biogeography: poleward range contraction of the blue mussel, Mytilus edulis L., in the western Atlantic. J Biogeogr 37:2243–2259CrossRefGoogle Scholar
  24. Kareiva P, Tallis H, Ricketts TH, Daily GC, Polasky S (2011) Theory and practice of mapping ecosystem services. Oxford University Press, OxfordCrossRefGoogle Scholar
  25. Kearney M (2012) Metabolic theory, life history and the distribution of a terrestrial ectotherm. Funct Ecol 26:167–179CrossRefGoogle Scholar
  26. Kearney M, Simpson SJ, Raubenheimer D, Helmuth BST (2010) Modelling the ecological niche from functional traits. Proc R Soc B Biol Sci 365:3469–3483Google Scholar
  27. Kearney M, Matzelle A, Helmuth BST (2012) Modelling the biomechanics meets the ecological niche: the importance of temporal data resolution. J Exp Biol 215:922–933CrossRefGoogle Scholar
  28. Kooijman SALM (2010) Dynamic energy budget theory for metabolic organisation, 3rd edn. Cambridge University Press, CambridgeGoogle Scholar
  29. Mangos A, Bassino J-P, Sauzade D (2010) The economic value of sustainable benefits rendered by the Mediterranean marine ecosystems, Plan Bleu, Valbonne (Blue Plan Papers) 8. http://www.planbleu.org/publications/Cahier8_marin_EN.pdf
  30. Marcos M, Tsimplis MN (2009) Comparison of results of AOGCMs in the Mediterranean Sea during the 21st century. J Geophys Res. doi: 10.1029/2008JC004820 Google Scholar
  31. Marshall DJ, McQuaid CD, Williams GA (2010) Non-climatic thermal adaptation: implications for responses to climate change. Biol Lett 6:669–673CrossRefGoogle Scholar
  32. Milanese M, Sarà A, Sarà G, Murray J (2011) Climate change, marine policy and the valuation of Mediterranean intertidal ecosystems. Chem Ecol 27:95–105CrossRefGoogle Scholar
  33. Millennium Ecosystem Assessment (2005) Ecosystems and human well-being: current state and trends, vol I. Island Press, Washington, DCGoogle Scholar
  34. Nagelkerken I, van der Velde G, Gorissen MW, Meijer GJ, Van’t Hof T, den Hartog C (2000) Importance of mangroves, seagrass beds and the shallow coral reefs as nursery for important coral reef fishes, using a visual census technique. Estuar Coast Shelf Sci 51:31–44CrossRefGoogle Scholar
  35. Nixon SW (2009) Eutrophication and the macroscope. Hydrobiologia 629:5–19CrossRefGoogle Scholar
  36. Palmeri V (2011) Ecological responses of marine bivalves to anthropogenic pressure. A bioenergetic approach. PhD Dissertation, University of PalermoGoogle Scholar
  37. Pusceddu A, Sarà G, Mazzola A, Fabiano M (1997) Relationships between suspended and sediment organic matter in a semi-enclosed marine system: the Stagnone di Marsala sound (Western Sicily). Water Air Soil Pollut 99:343–352Google Scholar
  38. Rilov G, Benayahu Y, Gaisth A (2004) Prolonged lag in population outbreak of an invasive mussel: a shifting-habitat model. Biol Invasions 6:347–364CrossRefGoogle Scholar
  39. Rosenthal R (1979) The “file drawer problem” and tolerance for null results. Psychol Bull 86:638–641CrossRefGoogle Scholar
  40. Safriel UN (1974) Vermetid gastropods and intertidal reefs in Israel and Bermuda. Science 186:1113–1115CrossRefGoogle Scholar
  41. Salomidi M, Katsanevakis S, Borja Á, Braeckman U, Damalas D, Galparsoro I, Mifsud R, Mirto S, Pascual M, Pipitone C, Rabaut M, Todorova V, Vassilopoulou V, Vega Fernandez T (2012) Assessment of goods and services, vulnerability, and conservation status of European seabed biotopes: a stepping stone towards ecosystem-based marine spatial management. Med Mar Sci 13(1):49–88Google Scholar
  42. Sarà G (2006) Hydrodynamic effect on the origin and quality of organic matter for bivalves: an integrated isotopic, biochemical and transplant study. Mar Ecol Prog Ser 328:65–73CrossRefGoogle Scholar
  43. Sarà G (2007a) A meta-analysis on the ecological effects of aquaculture on the water column: dissolved nutrients. Mar Environ Res 63:390–408CrossRefGoogle Scholar
  44. Sarà G (2007b) Ecological effects of aquaculture on living and non-living suspended fractions of the water column: a meta-analysis. Water Res 41:3187–3200CrossRefGoogle Scholar
  45. Sarà G (2009) Variation of suspended and sedimentary organic matter with depth in shallow coastal waters. Wetlands 29:1234–1242CrossRefGoogle Scholar
  46. Sarà G, De Pirro M (2011) Heart beat rate adaptations to varying salinity of two intertidal Mediterranean bivalves: the invasive Brachidontes pharaonis and the native Mytilaster minimus. Ital J Zool 78:193–197CrossRefGoogle Scholar
  47. Sarà G, Mazzola A (2004) The carrying capacity for Mediterranean bivalve suspension feeders: evidence from analysis of food availability and hydrodynamics and their integration into a local model. Ecol Model 179:281–296CrossRefGoogle Scholar
  48. Sarà G, Romano C, Caruso M, Mazzola A (2000) The new Lessepsian entry Brachidontes pharaonis (Fischer P., 1870) (Bivalvia, Mytilidae) in the western Mediterranean: a physiological analysis under varying natural conditions. J Shellfish Res 19:967–977Google Scholar
  49. Sarà G, Romano C, Widdows J, Staff FJ (2008) Effect of salinity and temperature on feeding physiology and scope for growth of an invasive species (Brachidontes pharaonis—MOLLUSCA: BIVALVIA) within the Mediterranean sea. J Exp Mar Biol Ecol 363:130–136CrossRefGoogle Scholar
  50. Sarà G, Kearney M, Helmuth B (2011a) Combining heat-transfer and energy budget models to predict local and geographic patterns of mortality in Mediterranean intertidal mussels. Chem Ecol 27:135–145CrossRefGoogle Scholar
  51. Sarà G, Lo Martire M, Sanfilippo M, Pulicanò G, Cortese G, Mazzola A, Manganaro A, Pusceddu A (2011b) Impacts of marine aquaculture at large spatial scales: evidences from N and P catchment loading and phytoplankton biomass. Mar Environ Res 71:317–324CrossRefGoogle Scholar
  52. Sarà G, Sarà A, Milanese M (2011c) The Mediterranean intertidal habitat as a natural laboratory to study climate change drivers of geographic patterns in marine biodiversity. Chem Ecol 27:91–93CrossRefGoogle Scholar
  53. Sarà G, Reid G, Rinaldi A, Palmeri V, Troell M, Kooijman SALM (2012) Growth and reproductive simulation of candidate shellfish species at fish cages in the southern Mediterranean: dynamic energy budget (DEB) modelling for integrated multi-trophic aquaculture. Aquaculture 324–325:259–266CrossRefGoogle Scholar
  54. Scheiner SM, Gurevitch J (2001) Design and analysis of ecological experiments. Oxford University Press, New YorkGoogle Scholar
  55. Scyphers SB, Powers SP, Heck KL, Byron D (2011) Oyster reefs as natural breakwaters mitigate shoreline loss and facilitate fisheries. PLoS ONE 6:e22396CrossRefGoogle Scholar
  56. Seabra R, Wethey DS, Santos AM, Lima FP (2011) Side matters: microhabitat influence on intertidal heat stress over a large geographical scale. J Exp Mar Biol Ecol 400:200–208CrossRefGoogle Scholar
  57. Somero GN (2010) The physiology of climate change: how potentials for acclimatization and genetic adaptation will determine ‘winners’ and ‘losers’. J Exp Biol 213:912–920CrossRefGoogle Scholar
  58. Tomanek L, Somero GN (2002) Interspecific and acclimation-induced variation in levels of heat-shock proteins 70 (hsp70) and 90 (hsp90) and heat-shock transcription factor-1 (HSF1) in congeneric marine snails (genus Tegula): implications for regulation of hsp gene expression. J Exp Biol 205:677–685Google Scholar
  59. Townsend M, Thrush SF, Carbines MJ (2011) Simplifying the complex: an ‘Ecosystem Principles Approach’ to goods and services management in marine coastal ecosystem. Mar Ecol Prog Ser 434:291–301CrossRefGoogle Scholar
  60. Tzur Y, Safriel UN (1978) Vermetid platforms indicators of coastal movements. Israel J Earth Sci 27:124–127Google Scholar
  61. Webster N (2007) Sponge disease: a global threat? Environ Microbiol 9(6):1363–1975CrossRefGoogle Scholar
  62. Wethey DS, Woodin SA (2008) Ecological hindcasting of biogeographic responses to climate change in the European intertidal zone. Hydrobiologia 606:139–151CrossRefGoogle Scholar
  63. Williams GA, Morritt D (1995) Habitat partitioning and thermal tolerance in a tropical limpet, Cellana grata on a tropical rocky shore. Mar Ecol Prog Ser 124:89–103CrossRefGoogle Scholar
  64. Williams GA, De Pirro M, Cartwright SR, Khangura HK, Ng WC, Leung TY, Morritt D (2011) Come rain or shine: the combined effects of physical stresses on physiological and protein-level responses of an intertidal limpet in the monsoonal tropics. Funct Ecol 25:101–110CrossRefGoogle Scholar
  65. Wilson MA, Costanza R, Boumans R, Liu S (2005) Integrated assessment and valuation of ecosystem goods and services provided by coastal systems. In: Wilson JG (ed) The intertidal ecosystem—the value of Ireland’s shore. Royal Irish Academy, DublinGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Gianluca Sarà
    • 1
    Email author
  • Martina Milanese
    • 2
  • Ivana Prusina
    • 3
  • Antonio Sarà
    • 2
  • Dror L. Angel
    • 4
  • Branko Glamuzina
    • 3
  • Tali Nitzan
    • 4
  • Shirra Freeman
    • 4
  • Alessandro Rinaldi
    • 1
    • 5
  • Valeria Palmeri
    • 1
  • Valeria Montalto
    • 1
  • Marco Lo Martire
    • 1
  • Paola Gianguzza
    • 1
  • Vincenzo Arizza
    • 6
  • Sabrina Lo Brutto
    • 6
  • Maurizio De Pirro
    • 7
  • Brian Helmuth
    • 8
  • Jason Murray
    • 9
  • Stefano De Cantis
    • 10
  • Gray A. Williams
    • 11
  1. 1.Dipartimento di Scienze della Terra e del MareUniversity of PalermoPalermoItaly
  2. 2.Studio Associato GaiaGenoaItaly
  3. 3.Department of AquacultureUniversity of DubrovnikDubrovnikCroatia
  4. 4.Recanati Institute for Maritime StudiesUniversity of HaifaHaifaIsrael
  5. 5.Dipartimento di Ecologia MarinaUniversità di MessinaMessinaItaly
  6. 6.Dipartimento di Biologia ambientale e BiodiversitàUniversity of PalermoPalermoItaly
  7. 7.Accademia Mare AmbienteMonte ArgentarioItaly
  8. 8.Department of Biological Sciences and Environment and Sustainability ProgramUniversity of South CarolinaColumbiaUSA
  9. 9.Moore School of Business and Environment and Sustainability ProgramUniversity of South CarolinaColumbiaUSA
  10. 10.Dipartimento di Scienze Economiche, Aziendali e FinanziarieUniversity of PalermoPalermoItaly
  11. 11.The Swire Institute of Marine ScienceThe University of Hong KongHong KongChina

Personalised recommendations