Regional Environmental Change

, Volume 13, Issue 4, pp 843–852 | Cite as

Vulnerability of 208 endemic or endangered species in China to the effects of climate change

  • Xinhai LiEmail author
  • Huidong Tian
  • Yuan Wang
  • Renqiang Li
  • Zengming Song
  • Fengchun Zhang
  • Ming Xu
  • Dianmo Li
Original Article


We assessed the vulnerability of 208 endemic or endangered species in China to the effects of climate change, as a part of the project “Research on China’s National Biodiversity and Climate Change Strategy and Action Plans”. Based on the China Species Information System, we selected comprehensive species as analysis targets, covering taxa including mammals, birds, reptiles, amphibians and plants. We applied nine species distribution models in BIOMOD (a package of R software) to estimate the current (1991–2010) ranges and predicted future (2081–2100) ranges of these species, using six climate variables based on Regional Climate Model version 3 (RegCM3) and A1B emission scenario. The model results showed that different taxa might show diverse potential range shifts over time. The range sizes of half of the species (104 species) would decrease, and those of another half would increase. We predicted that the future remaining ranges (intersection of current and future ranges/current ranges) of 135 species would be less than 50 % of their current range sizes. Species that are both endemic and critically endangered would lose more of their range than others. In summary, the most vulnerable species are currently found on the Qinghai-Tibetan Plateau, in the Hengduan Mountain Range, and southern China. Future action plans dealing with climate change in China should be prepared with consideration for vulnerable species and their habitats.


BIOMOD Climate change Conservation action plans Range shift Vulnerability 



This work is a part of the project “Research on China national biodiversity and climate change strategy and action plans”, supported by the EU-China Biodiversity Program (ECBP). This study was also supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA05080701) and the Public Welfare Project (201209027) of the Ministry of Environmental Protection of China. We thank anonymous reviewers who provided valuable comments and suggestions.

Supplementary material

10113_2012_344_MOESM1_ESM.doc (320 kb)
Supplementary material 1 (DOC 320 kb)


  1. Aertsen W, Kint V, van Orshoven J, Özkan K, Muys B (2010) Comparison and ranking of different modelling techniques for prediction of site index in Mediterranean mountain forests. Ecol Model 221(8):1119–1130. doi: 10.1016/j.ecolmodel.2010.01.007 CrossRefGoogle Scholar
  2. Alkemade R, Bakkenes M, Eickhout B (2011) Towards a general relationship between climate change and biodiversity: an example for plant species in Europe. Reg Environ Chang 11:S143–S150. doi: 10.1007/s10113-010-0161-1 CrossRefGoogle Scholar
  3. Araújo MB, New M (2007) Ensemble forecasting of species distributions. Trends Ecol Evol 22(1):42–47. doi: :10.1016/j.tree.2006.09.010 CrossRefGoogle Scholar
  4. Araújo MB, Rahbek C (2006) How does climate change affect biodiversity? Science 313(5792):1396–1397CrossRefGoogle Scholar
  5. Beaumont LJ, Pitman AJ, Poulsen M, Hughes L (2007) Where will species go? Incorporating new advances in climate modelling into projections of species distributions. Global Chang Biol 13(7):1368–1385CrossRefGoogle Scholar
  6. Breiman L (2001) Statistical modeling: the two cultures. Stat Sci 16(3):199–215. doi: 10.1214/ss/1009213726 CrossRefGoogle Scholar
  7. Ceballos G, Ehrlich PR (2002) Mammal population losses and the extinction crisis. Science 296(5569):904–907. doi: 10.1126/science.1069349 CrossRefGoogle Scholar
  8. China’s National Assessment Report on Climate Change Committee (2007) China’s National Assessment Report on Climate Change. BeijingGoogle Scholar
  9. Coetzee BWT, Robertson MP, Erasmus BFN, van Rensburg BJ, Thuiller W (2009) Ensemble models predict important bird areas in southern Africa will become less effective for conserving endemic birds under climate change. Global Ecol Biogeogr 18(6):701–710. doi: 10.1111/j.1466-8238.2009.00485.x CrossRefGoogle Scholar
  10. Conroy MJ, Runge MC, Nichols JD, Stodola KW, Cooper RJ (2011) Conservation in the face of climate change: the roles of alternative models, monitoring, and adaptation in confronting and reducing uncertainty. Biol Conserv 144(4):1204–1213. doi: 10.1016/j.biocon.2010.10.019 CrossRefGoogle Scholar
  11. Cressie N, Calder CA, Clark JS, Hoef JMV, Wikle CK (2009) Accounting for uncertainty in ecological analysis: the strengths and limitations of hierarchical statistical modeling. Ecol Appl 19(3):553–570. doi: 10.1890/07-0744.1 CrossRefGoogle Scholar
  12. del Barrio G, Harrison PA, Berry PM, Butt N, Sanjuan ME, Pearson RG, Dawson T (2006) Integrating multiple modelling approaches to predict the potential impacts of climate change on species’ distributions in contrasting regions: comparison and implications for policy. Environ Sci Policy 9(2):129–147. doi: 10.1016/j.envsci.2005.11.005 CrossRefGoogle Scholar
  13. Dormann CF, Schweiger O, Arens P, Augenstein I, Aviron S, Bailey D, Baudry J, Billeter R, Bugter R, Bukacek R, Burel F, Cerny M, De Cock R, De Blust G, DeFilippi R, Diekotter T, Dirksen J, Durka W, Edwards PJ, Frenzel M, Hamersky R, Hendrickx F, Herzog F, Klotz S, Koolstra B, Lausch A, Le Coeur D, Liira J, Maelfait JP, Opdam P, Roubalova M, Schermann-Legionnet A, Schermann N, Schmidt T, Smulders MJM, Speelmans M, Simova P, Verboom J, van Wingerden W, Zobel M (2008) Prediction uncertainty of environmental change effects on temperate European biodiversity. Ecol Lett 11(3):235–244. doi: 10.1111/j.1461-0248.2007.01142.x CrossRefGoogle Scholar
  14. Elith J, Graham CH (2009) Do they? How do they? Why do they differ? On finding reasons for differing performances of species distribution models. Ecography 32(1):66–77. doi: 10.1111/j.1600-0587.2008.05505.x CrossRefGoogle Scholar
  15. Elith J, Graham CH, Anderson RP, Dudik M, Ferrier S, Guisan A, Hijmans RJ, Huettmann F, Leathwick JR, Lehmann A, Li J, Lohmann LG, Loiselle BA, Manion G, Moritz C, Nakamura M, Nakazawa Y, Overton JM, Peterson AT, Phillips SJ, Richardson K, Scachetti-Pereira R, Schapire RE, Soberon J, Williams S, Wisz MS, Zimmermann NE (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29(2):129–151. doi: 10.1111/j.2006.0906-7590.04596.x CrossRefGoogle Scholar
  16. Erasmus BFN, Van Jaarsweld AS, Chown SL, Kshatriya M, Wessels KJ (2002) Vulnerability of South African animal taxa to climate change. Global Chang Biol 8:679–693CrossRefGoogle Scholar
  17. Fuller T, Morton DP, Sarkar S (2008) Incorporating uncertainty about species’ potential distributions under climate change into the selection of conservation areas with a case study from the Arctic Coastal Plain of Alaska. Biol Conserv 141(6):1547–1559. doi: 10.1016/j.biocon.2008.03.021 CrossRefGoogle Scholar
  18. Hirzel AH, Le Lay G, Helfer V, Randin C, Guisan A (2006) Evaluating the ability of habitat suitability models to predict species presences. Ecol Model 199(2):142–152. doi: 10.1016/j.ecolmodel.2006.05.017 CrossRefGoogle Scholar
  19. Hughes L (2011) Climate change and Australia: key vulnerable regions. Reg Environ Chang 11:S189–S195. doi: 10.1007/s10113-010-0158-9 CrossRefGoogle Scholar
  20. Huntley B, Collingham YC, Willis SG, Green RE (2008) Potential impacts of climatic change on european breeding birds. PLoS One 3 (1):Article No.: e1439. doi: 10.1371/journal.pone.0001439
  21. IPCC (2001) Climate change 2001: the scientific basis. Contribution of working group I to the third assessment report of the intergovernmental panel on climate change. Cambridge, United Kingdom and New York, NY, USAGoogle Scholar
  22. IPCC (2007) Climate change 2007: the physical science basis. Contribution of working group i to the fourth assessment. Report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  23. IUCN (2004) IUCN Red List of Threatened SpeciesGoogle Scholar
  24. Kampichler C, Wieland R, Calmé S, Weissenberger H, Arriaga-Weiss S (2010) Classification in conservation biology: a comparison of five machine-learning methods. Ecol Inform 5(6):441–450. doi: 10.1016/j.ecoinf.2010.06.003 CrossRefGoogle Scholar
  25. Li RQ, Tian HD, Li XH (2010) Climate change induced range shifts of Galliformes in China. Integr Zool 5(2):154–163. doi: 10.1111/j.1749-4877.2010.00198.x CrossRefGoogle Scholar
  26. Liu JG, Ouyang ZY, Pimm SL, Raven PH, Wang XK, Miao H, Han NY (2003) Protecting China’s biodiversity. Science 300(5623):1240–1241. doi: 10.1126/science.1078868 CrossRefGoogle Scholar
  27. Liu CR, Berry PM, Dawson TP, Pearson RG (2005) Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28(3):385–393. doi: 10.1111/j.0906-7590.2005.03957.x CrossRefGoogle Scholar
  28. Marmion M, Luoto M, Heikkinen RK, Thuiller W (2009) The performance of state-of-the-art modelling techniques depends on geographical distribution of species. Ecol Model 220(24):3512–3520. doi: 10.1016/j.ecolmodel.2008.10.019 CrossRefGoogle Scholar
  29. McMahon SM, Harrison SP, Armbruster WS, Bartlein PJ, Beale CM, Edwards ME, Kattge J, Midgley G, Morin X, Prentice IC (2011) Improving assessment and modelling of climate change impacts on global terrestrial biodiversity. Trends Ecol Evol 26(5):249–259. doi: 10.1016/j.tree.2011.02.012 CrossRefGoogle Scholar
  30. McRae BH, Schumaker NH, McKane RB, Busing RT, Solomon AM, Burdick CA (2008) A multi-model framework for simulating wildlife population response to land-use and climate change. Ecol Model 219(1–2):77–91. doi: 10.1016/j.ecolmodel.2008.08.001 CrossRefGoogle Scholar
  31. Meynard CN, Quinn JF (2007) Predicting species distributions: a critical comparison of the most common statistical models using artificial species. J Biogeogr 34(8):1455–1469. doi: 10.1111/j.1365-2699.2007.01720.x CrossRefGoogle Scholar
  32. Ministry of Environmental Protection (2010) 2009 Report on the State of the Environment of China. BeijingGoogle Scholar
  33. Ministry of Forestry, Ministry of Agriculture (1989) China State Key Protected Animal List. BeijingGoogle Scholar
  34. Morin X, Thuiller W (2009) Comparing niche- and process-based models to reduce prediction uncertainty in species range shifts under climate change. Ecology 90(5):1301–1313. doi: 10.1890/08-0134.1 CrossRefGoogle Scholar
  35. Niu Z, Zhang H, Gong P (2011) More protection for China’s wetlands. Nature 471(7338):305CrossRefGoogle Scholar
  36. Olden JD, Lawler JJ, Poff NL (2008) Machine learning methods without tears: a primer for ecologists. Q Rev Biol 83(2):171–193CrossRefGoogle Scholar
  37. Pal JS, Giorgi F, Bi X, Elguindi N, Solmon F, Gao X, Rauscher SA, Francisco R, Zakey A, Winter J, Ashfaq M, Syed FS, Bell JL, Diffenbaugh NS, Karmacharya J, Konare A, Martinez D, da Rocha RP, Sloan LC, Steiner AL (2007) Regional climate modeling for the developing world - The ICTP RegCM3 and RegCNET. Bull Am Meteorol Soc 88(9):1395–1409. doi: 10.1175/bams-88-9-1395 CrossRefGoogle Scholar
  38. Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42CrossRefGoogle Scholar
  39. Patt A, Klein RJT, de la Vega-Leinert A (2005) Taking the uncertainty in climate-change vulnerability assessment seriously. Comptes Rendus Geosci 337(4):411–424. doi: 10.1016/j.crte.2004.11.006 CrossRefGoogle Scholar
  40. Pearson RG, Thuiller W, Araújo MB, Martinez-Meyer E, Brotons L, McClean C, Miles L, Segurado P, Dawson TP, Lees DC (2006) Model-based uncertainty in species range prediction. J Biogeogr 33(10):1704–1711. doi: 10.1111/j.1365-2699.2006.01460.x CrossRefGoogle Scholar
  41. Phillips SJ, Dudik M (2008) Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31(2):161–175. doi: 10.1111/j.0906-7590.2008.5203.x CrossRefGoogle Scholar
  42. Prasad AM, Iverson LR, Liaw A (2006) Newer classification and regression tree techniques: bagging and random forests for ecological prediction. Ecosystems 9(2):181–199. doi: 10.1007/s10021-005-0054-1 CrossRefGoogle Scholar
  43. R Development Core Team (2011) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  44. Root TL, Price JT, Hall KR (2003) ‘Fingerprints’ of global warming on animals and plants. Nature 421:57–60CrossRefGoogle Scholar
  45. Schwartz MW, Iverson LR, Prasad AM, Matthews SN, O’Connor RJ (2006) Predicting extinctions as a result of climate change. Ecology 87(7):1611–1615CrossRefGoogle Scholar
  46. Segurado P, Araujo MB (2004) An evaluation of methods for modelling species distributions. J Biogeogr 31(10):1555–1568. doi: 10.1111/j.1365-2699.2004.01076.x CrossRefGoogle Scholar
  47. Sekercioglu CH, Schneider SH, Fay JP, Loarie SR (2008) Climate change, elevational range shifts, and bird extinctions. Conserv Biol 22(1):140–150. doi: 10.1111/j.1523-1739.2007.00852.x CrossRefGoogle Scholar
  48. Shoo LP, Williams SE, Hero JM (2006) Detecting climate change induced range shifts: where and how should we be looking? Austral Ecol 31(1):22–29. doi: 10.1111/j.1442-9993.2006.01539.x CrossRefGoogle Scholar
  49. State Forestry Administration, Ministry of Agriculture (1999) China State Key Protected Plant List. BeijingGoogle Scholar
  50. Thuiller W, Lafourcade B, Araujo M (2009a) ModOperating Manual for BIOMODGoogle Scholar
  51. Thuiller W, Lafourcade B, Engler R, Araújo MB (2009b) BIOMOD—a platform for ensemble forecasting of species distributions. Ecography 32(3):369–373. doi: 10.1111/j.1600-0587.2008.05742.x CrossRefGoogle Scholar
  52. Tsoar A, Allouche O, Steinitz O, Rotem D, Kadmon R (2007) A comparative evaluation of presence-only methods for modelling species distribution. Divers Distrib 13(4):397–405. doi: 10.1111/j.1472-4642.2007.00346.x CrossRefGoogle Scholar
  53. Wang G, Innes JL, Lei J, Dai S, Wu SW (2007) China’s forestry reforms. Science 318(5856):1556–1557. doi: 10.1126/science.1147247 CrossRefGoogle Scholar
  54. Wiens JA, Stralberg D, Jongsomjit D, Howell CA, Snyder MA (2009) Niches, models, and climate change: assessing the assumptions and uncertainties. Proc Natl Acad Sci USA 106(2):19729–19736. doi: 10.1073/pnas.0901639106 CrossRefGoogle Scholar
  55. Xie Y, Mackinnon J, Li D (2004) Study on biogeographical divisions of China. Biodivers Conserv 13(7):1391–1417. doi: 10.1023/ CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Xinhai Li
    • 1
    Email author
  • Huidong Tian
    • 1
  • Yuan Wang
    • 1
  • Renqiang Li
    • 2
  • Zengming Song
    • 2
  • Fengchun Zhang
    • 3
  • Ming Xu
    • 2
  • Dianmo Li
    • 1
  1. 1.Key Laboratory of the Zoological Systematics and EvolutionInstitute of Zoology, Chinese Academy of SciencesBeijingChina
  2. 2.Key Laboratory of Ecosystem Network Observation and ModelingInstitute of Geographic Sciences and Natural Resources Research, Chinese Academy of SciencesBeijingChina
  3. 3.Foreign Economic Cooperation OfficeMinistry of Environmental ProtectionBeijingChina

Personalised recommendations