Regional Environmental Change

, Volume 13, Issue 3, pp 509–519 | Cite as

Options for water storage and rainwater harvesting to improve health and resilience against climate change in Africa

  • Eline BoeleeEmail author
  • Mekonnen Yohannes
  • Jean-Noël Poda
  • Matthew McCartney
  • Philippe Cecchi
  • Solomon Kibret
  • Fitsum Hagos
  • Hammou Laamrani
Original Article


West and East Africa experience high variability of rainfall that is expected to increase with climate change. This results in fluctuations in water availability for food production and other socioeconomic activities. Water harvesting and storage can mitigate the adverse effects of rainfall variability. But past studies have shown that when investments in water storage are not guided by environmental health considerations, the increased availability of open water surface may increase the transmission of water-related diseases. This is demonstrated for schistosomiasis associated with small reservoirs in Burkina Faso, and for malaria in Ethiopia around large dams, small dams, and water harvesting ponds. The concern is that the rush to develop water harvesting and storage for climate change adaptation may increase the risk for already vulnerable people, in some cases more than canceling out the benefits of greater water availability. Taking health issues into account in a participatory approach to planning, design, and management of rainwater harvesting and water storage, as well as considering the full range of water storage options would enable better opportunities for enhancing resilience against climate change in vulnerable populations in sub-Saharan Africa.


Water storage Health Climate change Africa Small reservoirs Water harvesting 



This paper was prepared as one of the outputs in a project entitled “Rethinking water storage for climate change adaptation in sub-Saharan Africa,” funded by the Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH on behalf of the German Federal Ministry for Economic Cooperation and Development (BMZ) as part of its research program on Adaptation of African Agriculture to Climate Change. Earlier studies were funded through a variety of projects and donors, including the CGIAR Challenge Program on Water and Food (CPWF), the Canadian International Development Research Centre (IDRC), the CGIAR Systemwide Initiative on Malaria and Agriculture (SIMA), and the Poverty Reduction and Environmental Management (PREM) Programme of the Netherlands government. We thank our collaborators in the various studies, in particular Abderrahmane Ait Lhaj, Gayathri Jayasinghe, André Koné, Jonathan Lautze, Henry Madsen, Clifford Mutero, and Dramane Zongo. In addition, we thank the reviewers and Pay Drechsel for their constructive comments.


  1. Amini M, Abbaspour KC, Berg M, Winkel L, Hug SJ, Hoehn E, Yang H, Johnson CA (2008) Statistical modeling of global geogenic arsenic contamination in groundwater. Environ Sci Technol 42:3669–3675. doi: 10.1021/es702859e CrossRefGoogle Scholar
  2. Awulachew SB, Merrey DJ, Kamara AB, Van Koppen B, Penning de Vries F, Boelee E, Makombe G (2005) Experiences and opportunities for promoting small-scale/micro irrigation and rainwater harvesting for food security in Ethiopia. IWMI Working paper 98, International Water Management Institute, Colombo. doi: 10.3910/2009.277
  3. Birley MH (1995) The health impact assessment of development projects. HSMO Publications, LondonGoogle Scholar
  4. Boelee E, Laamrani H (2004) Environmental control of schistosomiasis through community participation in a Moroccan oasis. Trop Med Int Health 9(9):997–1004. doi: 10.1111/j.1365-3156.2004.01301.x CrossRefGoogle Scholar
  5. Boelee E, Madsen H (2006) Irrigation and schistosomiasis in Africa: ecological aspects. IWMI research report 99, International Water Management Institute, Colombo. doi: 10.3910/2009.099
  6. Boelee E, Cecchi P, Koné A (2009) Health impacts of small reservoirs in Burkina Faso. IWMI working paper 136, International Water Management Institute, Colombo. doi: 10.3910/2009.202
  7. Braune E, Xu Y (2010) The role of ground water in sub-Saharan Africa. Ground Water 48:229–238. doi: 10.1111/j.1745-6584.2009.00557.x CrossRefGoogle Scholar
  8. Carter RC, Brook JM, Jewsbury JM (1990) Assessing the impact of small dams on vector borne disease. Irrig Drain Syst 4(1):1–16. doi: 10.1007/BF01145969 CrossRefGoogle Scholar
  9. Clements ACA, Firth S, Dembelé R, Garba A, Touré S, Sacko M, Landouré A, Bosqué-Oliva E, Barnett AG, Brooker S, Fenwick A (2009) Use of Bayesian geostatistical prediction to estimate local variations in Schistosoma haematobium infection in western Africa. Bull World Health Organ 87:921–929. doi: 10.2471/BLT.08.058933 CrossRefGoogle Scholar
  10. Confalonieri U, Menne B, Akhtar R, Ebi KL, Hauengue M, Kovats RS, Revich B, Woodward A (2007) Human health. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Climate change 2007: impacts, adaptation and vulnerability. Contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 391–431Google Scholar
  11. Erlanger TE, Keiser J, Caldas de Castro M, Bos R, Singer BH, Tanner M, Utzinger J (2005) Effect of water resource development and management on lymphatic filariasis, and estimates of populations at risk. Am J Trop Med Hyg 73(3):523–533. Google Scholar
  12. Fehr R (1999) Environmental health impact assessment, evaluation of a ten-step model. Epidemiology 10:618–625CrossRefGoogle Scholar
  13. Gething PW, Smith DL, Patil AP, Tatem AJ, Snow RW, Hay SI (2010) Climate change and the global malaria recession. Nature 465:342–346. doi: 10.1038/nature09098 CrossRefGoogle Scholar
  14. Ghebreyesus TA, Haile M, Witten KH, Getachew A, Yohannes AM, Yohannes M, Teklehaimanot HD, Lindsay SW, Byass P (1999) Incidence of malaria among children living near dams in Northern Ethiopia: community based incidence survey. Brit Med J 319:663–666. Google Scholar
  15. Hailu M, Merga SN (2002) Workshop on the experiences of water harvesting in the drylands of Ethiopia: principles and practices. December 28–30, 2001, Mekelle. DCG Report 19. Drylands Coordination Group, Noragric, Ås.
  16. Hunter JM (2003) Inherited burden of disease: agricultural dams and the persistence of bloody urine (Schistosomiasis hematobium) in the upper East Region of Ghana, 1959–1997. Soc Sci Med 56(2):219–234. doi: 10.1016/S0277-9536(02)00021-7 CrossRefGoogle Scholar
  17. IPCC—Intergovernmental Panel on Climate Change (2007) Climate change 2007: synthesis report. Contribution of working groups I, II and III to the fourth assessment report of the intergovernmental panel on climate change [Core Writing Team: Pachauri RK, Reisinger A (eds)], IPCC, GenevaGoogle Scholar
  18. Johnston R, McCartney M (2010) Inventory of water storage types in the Blue Nile and Volta river basins. International Water Management Institute, Colombo. doi: 10.5337/2010.214
  19. Keiser J, Caldas de Castro M, Maltese MF, Bos R, Tanner M, Singer BH, Utzinger J (2005) Effect of irrigation and large dams on the burden of malaria on a global and regional scale. Am J Trop Med Hyg 72(4):392–406. Google Scholar
  20. Kibret S, McCartney M, Lautze J, Jayasinghe G (2009) Malaria transmission in the vicinity of impounded water: evidence from the Koka Reservoir, Ethiopia. IWMI Research Report 132, International Water Management Institute, Colombo. doi: 10.3910/2009.129
  21. L’Hôte Y, Mahé G, Somé B, Triboulet JP (2002) Analysis of a Sahelian rainfall index from 1986 to 2000; the drought continues. Hydrolog Sci J 47:563–572CrossRefGoogle Scholar
  22. Lemoalle J, de Condappa D (2009) Water atlas of the Volta Basin-Atlas de l’eau dans le bassin de la Volta. Challenge Program on Water and Food and Institut de Recherche pour le Développement, Colombo, MarseilleGoogle Scholar
  23. Mahé G, Paturel JE, Servat E, Conway D, Dezetter A (2005) Impact of land use change on soil water holding capacity and river modeling of the Nakambé river in Burkina-Faso. J Hydrol 300:33–43. doi: 10.1016/j.jhydrol.2004.04.028 CrossRefGoogle Scholar
  24. Mas-Coma S, Valero MA, Bargues MD (2009) Climate change effects on trematodiases, with emphasis on zoonotic fascioliasis and schistosomiasis. Vet Parasitol 163:264–280. doi: 10.1016/j.vetpar.2009.03.024 CrossRefGoogle Scholar
  25. McMichael AJ, Woodruff RE, Hales S (2006) Climate change and human health: present and future risks. Lancet 367(9513):859–869. doi: 10.1016/S0140-6736(06)68079-3 CrossRefGoogle Scholar
  26. Parham PE, Michael E (2010) Modeling the effects of weather and climate change on malaria transmission. Environ Health Persp 118(5):620–626. doi: 10.1289/ehp.0901256 CrossRefGoogle Scholar
  27. Pascual M, Ahumada JA, Chaves LF, Rodo X, Bouma M (2006) Malaria resurgence in the East African highlands: temperature trends revisited. PNAS 103(15):5829–5834. doi: 10.1073/pnas.0508929103 CrossRefGoogle Scholar
  28. Patz JA, Campbell-Lendrum D, Holloway T, Foley JA (2005) Impact of regional climate change on human health. Nature 438:310–317. doi: 10.1038/nature04188 CrossRefGoogle Scholar
  29. Patz JA, Gibbs HK, Foley JA, Rogers JV, Smith KR (2007) Climate change and global health: quantifying a growing ethical crisis. EcoHealth 4:397–405. doi: 10.1007/s10393-007-0141-1 CrossRefGoogle Scholar
  30. Poda JN, Sondo B, Parent G (2004a) Influence des hydro-aménagements sur la distribution des bilharzioses et de leurs hôtes intermédiaires au Burkina Faso. Cah études rech francoph/Santé 13(1):49–53.
  31. Poda JN, Traore A, Sondo BK (2004b) L’endémie bilharzienne au Burkina Faso. B Soc Pathol Exot 97(1):47–52.
  32. Rockstrom J, Falkenmark M, Karlberg L, Hoff H, Rost S, Gerten D (2009) Future water availability for global food production: the potential of green water for increasing resilience to global change. Water Resour Res 45. doi: 10.1029/2007WR006767
  33. Steinmann P, Keiser J, Bos R, Tanner M, Utzinger J (2006) Schistosomiasis and water resources development: systematic review, meta-analysis, and estimates of people. Lancet Infect Dis 6:411–425. doi: 10.1016/S1473-3099(06)70521-7 CrossRefGoogle Scholar
  34. Sultan B, Janicot S (2000) Abrupt shift of the ITCZ over West Africa and intra-seasonal variability. Geophys Res Lett 27(20):3353–3356. doi: 10.1029/1999GL011285 CrossRefGoogle Scholar
  35. Tamene L, Park SJ, Dikau R, Vlek PLG (2006) Reservoir siltation in the semi-arid highlands of northern Ethiopia: sediment yield–catchment area relationship and a semi-quantitative approach for predicting sediment yield. Earth Surf Processes 31(11):1364–1383. doi: 10.1002/esp.1338 CrossRefGoogle Scholar
  36. Tanser FC, Sharp B, le Sueur D (2003) Potential effect of climate change on malaria transmission in Africa. Lancet 362(9398):1792–1798. doi: 10.1016/S0140-6736(03)14898-2 CrossRefGoogle Scholar
  37. Thomas CJ, Davies G, Dunn CE (2004) Mixed picture for changes in stable malaria distribution with future climate in Africa. Trends Parasitol 20:216–220. doi: 10.1016/ CrossRefGoogle Scholar
  38. Thornton PK, Jones PG, Owiyo T, Kruska RL, Herrero M, Kristjanson P, Notenbaert A, Bekele N, Omolo A (2006) Mapping climate vulnerability and poverty in Africa. Accessed Nov 2010
  39. Thornton PK, Jones PG, Ericksen PJ, Challinor AJ (2011) Agriculture and food systems in sub-Saharan Africa in a 4°C + world. Philos Trans R Soc A 369:117–136. doi: 10.1098/rsta.2010.0246 CrossRefGoogle Scholar
  40. Touré S, Zhang Y, Bosqué-Oliva E, Ky C, Ouedraogo A, Koukounari A, Gabrielli AF, Bertrand S, Webster JP, Fenwick A (2008) Two-year impact of single praziquantel treatment on infection in the national control programme on schistosomiasis in Burkina Faso. Bull World Health Organ 86(10):780–787. doi: 10.2471/BLT.07.048694
  41. Vohland K, Boubacar B (2009) A review of in situ rainwater harvesting (RWH) practices modifying landscape functions in African drylands. Agr Ecosyst Environ 131(3–4):119–127. doi: 10.1016/j.agee.2009.01.010 CrossRefGoogle Scholar
  42. von Korff Y, d’Aquino P, Daniell KA, Bijlsma R (2010) Designing participation processes for water management and beyond. Ecol Soc 15(3):1. Google Scholar
  43. Waktola KD (2008) Malaria and pond-based rainwater harvesting linkages in the fringes of central highland Ethiopia. Rural and remote health 8(3):956.
  44. WHO (2008) The global burden of disease, 2004 update. World Health Organization, GenevaGoogle Scholar
  45. WHO (2010) World malaria report 2010. World Health Organization, GenevaGoogle Scholar
  46. Wisser D, Frolking S, Douglas EM, Fekete BM, Schumann AH, Vörösmarty CJ (2010) The significance of local water resources captured in small reservoirs for crop production—a global scale analysis. J Hydrol 384:264–275. doi: 10.1016/j.jhydrol.2009.07.032 CrossRefGoogle Scholar
  47. Yohannes M, Haile M (2010) The potential of in situ rain water harvesting for water resources conservation on malaria transmission in Tigray, Northern Ethiopia. MEJS 2(2):49–63.
  48. Yohannes M, Haile M, Ghebreyesus TA, Witten KH, Getachew A, Byass P, Lindsay SW (2005) Can source reduction of mosquito larval habitat reduce malaria transmission in Tigray, Ethiopia? Trop Med Int Health 10(12):1274–1285. doi: 10.1111/j.1365-3156.2005.01512.x CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Eline Boelee
    • 1
    Email author
  • Mekonnen Yohannes
    • 3
  • Jean-Noël Poda
    • 4
  • Matthew McCartney
    • 2
  • Philippe Cecchi
    • 5
  • Solomon Kibret
    • 6
  • Fitsum Hagos
    • 2
  • Hammou Laamrani
    • 7
  1. 1.International Water Management Institute (IWMI)ColomboSri Lanka
  2. 2.International Water Management Institute (IWMI)Addis AbabaEthiopia
  3. 3.Mekelle UniversityMekelleEthiopia
  4. 4.Institut de Recherche en Sciences de la Santé (IRSS), Centre National de la Recherche, Scientifique et Technologique (CNRST)OuagadougouBurkina Faso
  5. 5.Institut de Recherche pour le Développement (IRD), IRD UMR G-EAUMontpellierFrance
  6. 6.Addis Ababa UniversityAddis AbabaEthiopia
  7. 7.International Development Research Centre (IDRC)CairoEgypt

Personalised recommendations