Advertisement

Regional Environmental Change

, Volume 12, Issue 3, pp 571–580 | Cite as

Modelling changes in nitrogen emissions into the Oder River System 1875–1944

  • Mathias GadegastEmail author
  • Ulrike Hirt
  • Dieter Opitz
  • Markus Venohr
Original Article

Abstract

Studies of nutrient emissions into surface waters are usually only performed for years in recent decades. However, estimating nutrient emissions for the more distant past enables us to identify the main factors responsible for the increasing nutrient contamination since the end of the nineteenth century. We focussed on the Oder River System for 1875–1944, divided into 10-year periods. Nutrient emissions into surface waters were calculated with the model MONERIS (MOdelling Nutrient Emissions in RIver Systems). For seven different pathways and eight sources, the total nitrogen (TN) emissions were quantified. The TN-emissions into the surface waters for 1880 amounted to 25,300 t year−1, and by 1940, this value had almost doubled to 46,600 t year−1. In 1880, 57% of TN-emissions into the surface waters derived from urban systems, due to the high amount of untreated waste water. In 1940, only 34% of TN-emissions into surface waters derived from urban systems, despite a population growth of about 27% since 1880; point sources via newly constructed waste water treatment plants (WWTPs) increased from 4% (1880) to 26% (1940). During the study period, the main changes in diffuse TN-emissions from agriculture were caused by inorganic fertilizer application and nitrogen deposition, while TN-emissions via urban sources were shifted to point sources due to population growth and the construction of new WWTPs. Furthermore, estimated TN-concentrations could make a contribution to construct benchmarks for nutrient concentrations according to the physiochemical properties to implement the European Water Framework Directive (WFD 2000).

Keywords

Long-term changes Nitrogen emissions Nitrogen loads Nitrogen surplus Oder River 

Supplementary material

10113_2011_270_MOESM1_ESM.doc (3.2 mb)
Supplementary material 1 (DOC 3,303 kb)

References

  1. Behrendt H, Dannowski R (eds) (2005) Nutrients and heavy metals in the Odra River system. Weißensee Verlag, BerlinGoogle Scholar
  2. Behrendt H, Huber P, Kornmilch M, Ley M, Opitz D, Schmoll O, Scholz G, Uebe R (1999) Nutrient emissions into river basins of Germany. Umweltbundesamt, BerlinGoogle Scholar
  3. Behrendt H, Opitz D, Kolanek A, Korol R, Strońska M (2008) Changes of nutrient loads of the Odra River during the last century: their causes and consequences. J Water Land Dev 12:124–144. doi: 10.2478/v10025-009-0010-0 Google Scholar
  4. Brix J, Imhoff K, Weldert R (eds) (1934a) Die Stadtentwässerung in Deutschland, vol 1. Gustav Fischer, JenaGoogle Scholar
  5. Brix J, Imhoff K, Weldert R (eds) (1934b) Die Stadtentwässerung in Deutschland, vol 2. Gustav Fischer, JenaGoogle Scholar
  6. CORINE Land Cover (CLC 2000) (2004) Umweltbundesamt, DLR-DFDGoogle Scholar
  7. Gemeindeverzeichnis.de (2009) [Internet]. Solingen: Uli Schubert; c2000–2010 [updated 11 Nov 2009]. Available from: http://gemeindeverzeichnis.de/
  8. German Meteorological Yearbook, 1887–1901 (Deutsches Meteorologisches Jahrbuch). Beobachtungssystem des Königreichs Preußen und benachbarter Staaten. Königlich-Preußisches Meteorologisches Institut, BerlinGoogle Scholar
  9. Hamm A, Gleisberg D, Hegemann W, Krauth KH, Metzner G, Sarfert F, Schleypen P (1991) Stickstoff- und Phosphoreintrag in Oberflächengewässer aus “punktförmigen Quellen”. In: Hamm A (ed) Studie über Wirkungen und Qualitätsziele von Nährstoffen in Fließgewässern. Acadamia, Sankt Augustin, pp 765–799Google Scholar
  10. Heiden E (1882) Die menschlichen Exkremente in national-öconomischer, hygienischer, finanzieller und landwirtschaftlicher Beziehung. Cohen, HannoverGoogle Scholar
  11. Hirt U, Venohr M, Kreins P, Behrendt H (2008) Modelling nutrient emissions and the impact of nutrient reduction measures in the Weser River basin, Germany. Water Sci Technol 58(11):2251–2258. doi: 10.2166/wst.2008.833 CrossRefGoogle Scholar
  12. Hulwa F (1890) Beiträge zur Schwemmkanalisation und Wasserversorgung der Stadt Breslau. Korn, BreslauGoogle Scholar
  13. Humborg C, Fennel K, Pastuszak M, Fennel W (2000) A box model approach for a long-term assessment of estuarine eutrophication, Szczecin Lagoon, southern Baltic. J Mar Syst 25:387–403. doi: 10.1016/S0924-7963(00)00029-4 CrossRefGoogle Scholar
  14. IKSO (2005) Internationale Flussgebietseinheit Oder, Bericht an die Europäische Kommission. Koordination der Internationalen Kommission zum Schutz der OderGoogle Scholar
  15. König J (1887) Die Verunreinigung der Gewässer, deren schädliche Folgen, nebst Mitteln zur Reinigung der Schmutzwässer. Springer, BerlinGoogle Scholar
  16. Krovang B, Behrendt H, Andersen HE, Arheimer B, Barr A, Borgvang SA, Bouraoui F, Granlund K, Grizzetti B, Groenendijk P, Schwaiger E, Hejzlar J, Hoffmann L, Johnsson H, Panagopoulos Y, Lo Porto A, Reisser H, Schoumans O, Anthony SSM, Venohr M, Larsen SE (2009) Ensemble modelling of nutrient loads and nutrient load partitioning in 17 European catchments. J Environ Monit 11:572–583. doi: 10.1039/b900101h CrossRefGoogle Scholar
  17. Laane RWPM (ed) (1992) Background concentrations of natural compounds in rivers, sea water, atmosphere and mussels. The Hague, Tidal Waters Division. Report DGW-92.033Google Scholar
  18. Länderarbeitsgemeinschaft Wasser (LAWA) (1998) Beurteilung der Wasserbeschaffenheit von Fließgewässern in der Bundesrepublik Deutschland. LAWA, BerlinGoogle Scholar
  19. Löser N, Sekscinska A (2005) Integriertes Küste-Flusseinzugsgebiets-Management an der Oder/Odra: Hintergrundbericht, IKZM-Oder Berichte, vol 14. EUCC, Die Küsten Union Deutschland e.V., RostockGoogle Scholar
  20. Luedecke C (1917) Einiges über die Entwässerung des Kulturlandes und das Dränen des Ackers. Der Kulturtechniker 19:49–65Google Scholar
  21. OECD (1997) Environmental indicators for agriculture. OECD, ParisGoogle Scholar
  22. Results of the Meteorological Monitoring, 1879–1890 (Ergebnisse der Meteorologischen Beobachtung). Königlich-Preußisches Meteorologisches Institut, BerlinGoogle Scholar
  23. Rudolf B, Schneider U (2005) Calculation of gridded precipitation data for the global land-surface using in situ gauge observations. In: Proceedings of the 2nd workshop of the international precipitation working group IPWG, Monterey October 2004, EUMETSAT [cited 08 Dec 2010]. Available from: http://www.dwd.de/bvbw/generator/DWDWWW/Content/Oeffentlichkeit/KU/KU4/KU42/en/Reports__Publications/GPCC__status__report__2010,templateId=raw,property=publicationFile.pdf/GPCC_status_report_2010.pdf
  24. Rudolf B, Becker A, Schneider U, Meyer-Christoffer A, Ziese M (2010) GPCC status report July 2010 [on the most recent gridded global data set issued in fall 2010 by the global precipitation climatology centre (GPCC)], July 2010 [cited 08 Dec 2010]. Available from: http://www.dwd.de/bvbw/generator/DWDWWW/Content/Oeffentlichkeit/KU/KU4/KU42/en/Product__Access/PDF__Rudolf__Calculation__IPWG__2005,templateId=raw,property=publicationFile.pdf/PDF_Rudolf_Calculation_IPWG_2005.pdf
  25. Salomon H (1907) Die städtische Abwasserbeseitigung in Deutschland. Wörterbuchartig angeordnete Nachrichten und Beschreibungen städtischer Kanalisations- und Kläranlagen in deutschen Wohnplätzen. Abwässer-Lexikon, vol 1. Gustav Fischer, JenaGoogle Scholar
  26. Salomon H (1911) Die städtische Abwasserbeseitigung in Deutschland. Wörterbuchartig angeordnete Nachrichten und Beschreibungen städtischer Kanalisations- und Kläranlagen in deutschen Wohnplätzen. Abwässer-Lexikon, vol 1. Gustav Fischer, JenaGoogle Scholar
  27. Savchuk O, Wulff F, Hille S, Humborg C, Pollehne F (2008) The Baltic Sea a century ago: a reconstruction from model simulations, verified by observations. J Mar Syst 74:485–494. doi: 10.1016/j.jmarsys.2008.03.008 CrossRefGoogle Scholar
  28. Schernewski G, Neumann T (2005) The trophic state of the Baltic Sea a century ago: a model simulation study. J Mar Syst 53:109–124. doi: 10.1016/j.jmarsys.2004.03.007 CrossRefGoogle Scholar
  29. Schernewski G, Behrendt H, Neumann T (2008) An integrated river basin-coast-sea modelling scenario for nitrogen management in coastal waters. J Coast Conserv 12(2):53–66. doi: 10.1007/s11852-008-0035-6 CrossRefGoogle Scholar
  30. Schöpp W, Posch M, Mylona S, Johansson M (2003) Long-term development of acid deposition (1880–2030) in sensitive freshwater regions in Europe. Hydrol Earth Syst Sci 7:436–446CrossRefGoogle Scholar
  31. Statistical Yearbooks of the German Empire, 1880–1942 (Statistisches Jahrbuch für das Deutsche Reich). Statistisches Reichsamt, BerlinGoogle Scholar
  32. Topcu D, Behrendt H, Brockmann U, Claussen U (2011) Natural background concentrations of nutrients in the German bright area (North Sea). Environ Monit Assess 174:361–388. doi: 10.1007/s10661-0101463-y CrossRefGoogle Scholar
  33. Turner RK, Adger WN, Lorenzoni I (1998) Towards integrated modelling and analysis on coastal zones: principles and practices. LOICZ Reports and Studies No.11Google Scholar
  34. Venohr M, Hürdler J, Opitz D (2010a) Potential von Maßnahmen zur Reduktion der Nährstoffflüsse im Einzugsgebiet der Oder. Coastline Rep 15:151–165Google Scholar
  35. Venohr M, Hirt U, Hofmann J, Opitz D, Gericke A, Wetzig A, Ortelbach K, Natho S, Neumann F, Hürdler J (2010b) The model system MONERIS 2.14.1vba manual. Leibniz Institute of Freshwater Ecology and Inland Fisheries, BerlinGoogle Scholar
  36. Vose RS, Schmoyer RL, Steurer PM, Peterson TC, Heim R, Karl TR, Eischeid JK (1998) Global historical climatology network, 1753–1990. Previously published as the global historical climatology network: long-term monthly temperature, precipitation, sea level pressure, and station pressure data, ORNL/CDIAC-53, CDIAC NDP-041, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge, July 1992 [cited 27 June 2002]. Available from: http://daac.ornl.gov/CLIMATE/guides/ghcn.html
  37. WFD (2000) European parliament and council of the European union (ED). Directive 2000/60/EC of the European parliament and the council of the European union of 23 October 2000 established a framework for community action in the field of water policy. Official Journal of the European Communities 327:1–73Google Scholar
  38. Zunker F (1929) Umfang der zu dränenden Ackerfläche in Deutschland und die Notwendigkeit der Verbesserung des Dränungsverfahrens. Der Kulturtechniker 31:131–136Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Mathias Gadegast
    • 1
    Email author
  • Ulrike Hirt
    • 1
  • Dieter Opitz
    • 1
  • Markus Venohr
    • 1
  1. 1.Department of Shallow Lakes and Lowland RiversLeibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB)BerlinGermany

Personalised recommendations