Advertisement

Regional Environmental Change

, Volume 11, Issue 4, pp 917–924 | Cite as

Impact of woody encroachment on soil organic carbon and nitrogen in abandoned agricultural lands along a rainfall gradient in Italy

  • G. AlbertiEmail author
  • V. Leronni
  • M. Piazzi
  • F. Petrella
  • P. Mairota
  • A. Peressotti
  • P. Piussi
  • R. Valentini
  • L. Gristina
  • T. La Mantia
  • A. Novara
  • J. Rühl
Original Article

Abstract

Land use changes represent one of the most important components of global environmental change and have a strong influence on carbon cycling. As a consequence of changes in economy during the last century, areas of marginal agriculture have been abandoned leading to secondary successions. The encroachment of woody plants into grasslands, pastures and croplands is generally thought to increase the carbon stored in these ecosystems even though there are evidences for a decrease in soil carbon stocks after land use change. In this paper, we investigate the effects of woody plant invasion on soil carbon and nitrogen stocks along a precipitation gradient (200–2,500 mm) using original data from paired experiment in Italian Alps and Sicily and data from literature (Guo and Gifford Glob Change Biol 8(4):345–360, 2002). We found a clear negative relationship (−0.05% C mm−1) between changes in soil organic carbon and precipitation explaining 70% of the variation in soil C stocks after recolonization: dry sites gain carbon (up to +67%) while wet sites lose carbon (up to −45%). In our data set, there seem to be two threshold values for soil carbon accumulation: the first one is 900 mm of mean annual rainfall, which separates the negative from the positive ratio values; the second one is 750 mm, which divides the positive values in two groups of sites. Most interestingly, this threshold of 750 mm corresponds exactly to a bioclimatic threshold: sites with <750 mm mean annual rainfall is classified as thermo-mediterranean sites, while the ones >750 mm are classified as mesomediterranean sites. This suggests that apart from rainfall also temperature values have an important influence on soil carbon accumulation after abandonment. Moreover, our results confirmed that the correlation between rainfall and trend in soil organic carbon may be related to nitrogen dynamics: carbon losses may occur only if there is a substantial decrease in soil nitrogen stock which occurs in wetter sites probably because of the higher leaching.

Keywords

Land use change Soil carbon Precipitation gradient Secondary succession 

Notes

Acknowledgments

This work was financially supported by the Italian government through the FIRB project ‘‘Carboitaly’’, the PRIN project ‘‘Methodologies for CO2 uptake accounting in agricultural and forest ecosystems’’ and PRIN project “The impacts of secondary succession processes on carbon storage in soil and biomass and on biodiversity and the role of dispersal centres and vectors for recolonization processes”. We would like to thank Diego Chiabà for the help during field campaigns and lab analysis.

References

  1. Alberti G, Peressotti A, Piussi P, Zerbi G (2008) Forest ecosystem carbon accumulation during a secondary succession on Eastern Prealps (Italy). Forestry 81:1–11CrossRefGoogle Scholar
  2. Alberti G, Peressotti A, Piussi P, Zerbi G (2009) Structure and stand development of secondary forests in Eastern Prealps (Italy). Dendrochronologia 27:173–181CrossRefGoogle Scholar
  3. Blake GR, Hartge KH (1986) Bulk density. In: Klute A(ed) Methods of soil analysis, Part 1, 2nd Edn. Agronomy Monograph, vol 9. American Society of Agronomy, Madison, WI, pp 363–375Google Scholar
  4. Bonet B (2004) Secondary succession of semi-arid Mediterranean old-fields in south-eastern Spain: insights for conservation and restoration of degraded lands. J Arid Environ 56:213–233CrossRefGoogle Scholar
  5. Carreira JA, Niell FX, Lajtha K (1994) Soil nitrogen availability and nitrification in Mediterranean shrublands of varying fire history and successional age. Biogeochemistry 26:189–209CrossRefGoogle Scholar
  6. Conteh A (1999) Evaluation of the paired site approach to estimating changes in soil carbon. Discussion paper 3, of Appendix 6 to Technical Report No 2. Australian Greenhouse Office, CamberraGoogle Scholar
  7. Corona P, Pompei E, Scarascia Mugnozza G (2005) Stima probabilistica del tasso di espansione annua e del valore al 1990 della superficie forestale nella Regione Abruzzo. Forest@ 2(2): 178–184Google Scholar
  8. Costa G e La Mantia T (2005) Il ruolo della macchia mediterranea nello stoccaggio del carbonio atmosferico. Foresta@ 2(4): 378–387. Online: http://www.sisef.it/
  9. FAO Database (2001) http://faostat.fao.org/faostat/collections?subset=agriculture. Last accessed Nov2010
  10. Davis M, Condron L (2002) Impact of grassland afforestation on soil C in New Zealand: a review of paired site studies. Aust J Soil Res 40:675–690CrossRefGoogle Scholar
  11. Davis MR, Allen RB, Clinton PW (2003) Carbon storage along a stand development sequence in a New Zealand Nothofagus forest. Fort Ecol Manag 177:313–321CrossRefGoogle Scholar
  12. Davis M, Wilde H, Tate K (2004) Using paired plots to verify soil carbon change associated with land-use change as predicted from historical soil inventory. SuperSoil 2004: 3rd Australian New Zealand soils conference, University of Sydney, Australia, 5–9 Dec 2004. Published on CDROM. Website: http://www.regional.org.au/au/asssi/
  13. Dawson JJC, Smith P (2007) Carbon losses from soil and its consequences for land management. Sci Total Environ. doi: 10.1016/j.scitotenv.2007.03.023
  14. Debussche M, Escarré J, Lepart J, Houssard C, Lavorel S (1996) Changes in Mediterranean plant succession: old-fields revisited. J Veg Sci 7:519–526CrossRefGoogle Scholar
  15. Dixon RK, Brown S, Houghton RA, Solomon AM, Trexler MC, Wisniewski J (1994) Carbon pools and flux of global forest ecosystems. Science 263:185–190CrossRefGoogle Scholar
  16. Drago A, Lo Bianco B, Monterosso I (2002) Atlante climatologico della Sicilia. Assessorato agricoltura e foreste. Servizio informativo agrometereologico siciliano. Regione sicilianaGoogle Scholar
  17. Ellenberg H (1982) Vegetation Mitteleuropas mit den Alpen. Ulmer Verlag, StuttgartGoogle Scholar
  18. Gingrich A, Karl-Heinz Erb KH, Krausmann F, Gaube V, Haberl H (2007) Long-term dynamics of terrestrial carbon stocks in Austria: a comprehensive assessment of the time period from 1830 to 2000. Reg Environ Change 7:37–47CrossRefGoogle Scholar
  19. Guo LB, Gifford RM (2002) Soil carbon stocks and land use change: a meta analysis. Glob Change Biol 8(4):345–360CrossRefGoogle Scholar
  20. Halliday JC, Tate KR, McMurtrie RE, Scott NA (2003) Mechanisms for changes in soil carbon storage with pasture to Pinus radiata land-use change. Glob Change Biol 9:1294–1308CrossRefGoogle Scholar
  21. Hooker TD, Compton JE (2003) Forest ecosystem carbon and nitrogen accumulation during the first century after agricultural abandonment. Ecol Appl 13(2):299–313CrossRefGoogle Scholar
  22. Jackson RB, Banner JL, Jobbagy EG, Pockman WT, Wall DH (2002) Ecosystem carbon loss with woody plant invasion of grasslands. Nature 418:623–626CrossRefGoogle Scholar
  23. Kirschbaum MUF, Guo LB, Gifford RM (2008) Why does rainfall affect the trend in soil carbon after converting pastures to forests? Possible explanation based on nitrogen dynamics. For Ecol Manag 255:2990–3000CrossRefGoogle Scholar
  24. Knops JMH, Tilman D (2000) Dynamics of soil nitrogen and carbon accumulation for 61 years after agricultural abandonment. Ecology 81(1):88–98CrossRefGoogle Scholar
  25. Kuemmerle T, Muller D, Griffiths P, Rusu M (2009) Land use change in Southern Romania after collapse of socialism. Reg Environ Change 9:1–12CrossRefGoogle Scholar
  26. La Mantia T, Oddo G, Rühl J, Furnari G, Scalenghe R (2007) Variazione degli stock di carbonio in seguito ai processi di abbandono dei coltivi: il caso studio dell’isola di Pantelleria (Tp). In: a cura di E. Lingua, R. Marzano, G. Minotta, R. Motta, A. Nosenzo, G. Bovio (eds) Atti V° Congresso SISEF: Foreste e Società—Cambiamenti, Conflitti, Sinergie Grugliasco(TO), 27–20 Settembre2005. Foresta@ vol 4. no. 1 (Mar 2007), 102–109Google Scholar
  27. La Mantia T, Rühl J, Pasta S, Campisi D, Terrazzino G (2008) Structural analysis of woody species in Mediterranean old fields. Plant Biosyst 142(3):462–471CrossRefGoogle Scholar
  28. Lal R (2004) Soil carbon sequestration impacts on global climate change and food security. Science 304:1623–1627CrossRefGoogle Scholar
  29. Mather AS (1992) The forest transition. Area 24(4):367–379Google Scholar
  30. Parfitt RL, Percival HJ, Dahlgren RA, Hill LF (1997) Soil and solution chemistry under pasture and radiata pine in New Zealand. Plant Soil 91:279–290CrossRefGoogle Scholar
  31. Parfitt RL, Scott NA, Ross DJ, Salt GJ, Tate KR (2003) Land-use change effects on soil C and N transformations in soils of high N status: comparisons under indigenous forest, pasture and pine plantation. Biogeochemistry 66:203–221CrossRefGoogle Scholar
  32. Paul KI, Polglase PJ, Nyakuengama JG, Khanna PK (2002) Change in soil carbon following afforestation. For Ecol Manag 168:241–257CrossRefGoogle Scholar
  33. Piussi P (2000) Expansion of European mountain forests. In: M Price, N Butt (eds) Forests in sustainable mountain development: a state of knowledge report 2000, CABI Publishing, Wallingford, pp 19–25Google Scholar
  34. Piussi P (2002) Rimboschimenti spontanei ed evoluzioni post coltura. Monti e boschi 3:31–37Google Scholar
  35. Randall GW, Ila DJM (2001) Nitrate nitrogen in surface water as influenced by climatic conditions and agricultural practices. J Environ Qual 30:337–344CrossRefGoogle Scholar
  36. Rastetter EB, McKane RB, Shaver GR, Melillo JM (1992) Changes in C storage by terrestrial ecosystems: how C:N interactions restrict responses to CO2 and temperature. Water Air Soil Pollut 64:327–344CrossRefGoogle Scholar
  37. Rivas-Martínez S (1994) Bases para una nueva clasificación bioclimática de la Tierra. Folia Botanica Matritensia 10:1–23Google Scholar
  38. Rivas-Martínez (2008) Global bioclimatics (Clasificación biclimática de la Tierra) (versión 01-12-2008). http://www.globalbioclimatics.org
  39. Robertson GP, Vitousek PM (1981) Nitrification potentials in primary and secondary succession. Ecology 62:376–386CrossRefGoogle Scholar
  40. Rühl J, Pasta S (2008) Plant succession on Sicilian terraces. Annali di Botanica (Roma) 7:111–126Google Scholar
  41. Rühl J, Pasta S, Schnittler M (2006) A chronosequence study of vegetation dynamics on vine and caper terraces of Pantelleria Island (Sicily). Arch f Natursch Landschaftsforsch Greifswald 45(1): 71–90Google Scholar
  42. Schimel DS (1995) Terrestrial ecosystems and the carbon cycle. Glob Biol Change 1:77–91CrossRefGoogle Scholar
  43. Scott NA, Tate KR, Ford-Robertson J, Giltrap DJ, Smith CT (1999) Soil carbon storage in plantation forests and pastures: land-use change implications. Tellus 51B:326–335Google Scholar
  44. Thuille A, Buchmann N, Schulze ED (2000) Carbon stocks and soil respiration rates during deforestation, grassland use and subsequent Norway spruce afforestation in the Southern Alps, Italy. Tree Physiol 20(13):849–857Google Scholar
  45. Watson RT, Noble IR, Bolin B, Ravindranath NH, Verardo DJ, Dokken DJ (2000) Land use, land-use change and forestry: a special report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, 388 pGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • G. Alberti
    • 1
    Email author
  • V. Leronni
    • 2
  • M. Piazzi
    • 3
  • F. Petrella
    • 3
  • P. Mairota
    • 2
  • A. Peressotti
    • 1
  • P. Piussi
    • 4
  • R. Valentini
    • 5
  • L. Gristina
    • 6
  • T. La Mantia
    • 7
  • A. Novara
    • 6
  • J. Rühl
    • 8
  1. 1.Department of Agricultural and Environmental SciencesUniversity of UdineUdineItaly
  2. 2.Dipartimento di Scienze Agro-Ambientali e TerritorialiUniversity of BariBariItaly
  3. 3.Istituto per le Piante da Legno e l’Ambiente (IPLA)TurinItaly
  4. 4.Department of Forest Science and ResourcesUniversity of TusciaViterboItaly
  5. 5.Department of Agriculture and Forest Sciences and TechnologiesUniversity of FlorenceFlorenceItaly
  6. 6.Dipartimento SagaUniversity of PalermoPalermoItaly
  7. 7.Dipartimento DemetraUniversity of PalermoPalermoItaly
  8. 8.EnBioTech s.r.l.PalermoItaly

Personalised recommendations