Regional Environmental Change

, Volume 11, Issue 3, pp 693–705 | Cite as

Understanding deforestation in montane and lowland forests of the Colombian Andes

  • Dolors ArmenterasEmail author
  • Nelly Rodríguez
  • Javier Retana
  • Mónica Morales
Original Article


Colombian Andean forests cover nine million ha. These forests provide an informative case study of mountain deforestation in South America. They are surrounded by tropical lowland forests, and they host most of the country’s human population. This study evaluates the relative importance of human and natural variables in deforestation of the Colombian Andes between 1985 and 2005 using remote sensing methods, geographic information system (GIS) technology and general linear models (GLM). The following factors affected the annual deforestation in the region positively: forced population migration, unsatisfied basic needs, economic activity, crops, pastures, illicit crops, protected areas and slope. Factors having a negative effect were tenure of small land parcels, road density, water scarcity and mean temperature. The results of this study also provide insight into the differences between the dynamics of lowland forests and those of montane forests. Montane forests had a lower annual rate of deforestation than did forests in the lowlands. Socio-economic, demographic and biophysical factors explain overall deforestation rates for the region. However, when altitude variation is taken into account, intraregional differences in the Andes become evident. Deforestation processes differ between those areas adjacent to the high Andean valleys where most of the country’s population concentrates and those areas in the tropical lowlands north, west and east of the Andean chain. Differences between lowland and montane forest dynamics are due partly to the accessibility of forests and differences in wealth and economic activities. In montane forests, deforestation is positively influenced by economic activity, the presence of protected areas and higher slopes. Deforestation in montane forests is negatively affected by tenure of small land parcels, road density, water scarcity and mean temperature. Lowland deforestation rates are more closely related to rural population, pasture percentage, crops, protected areas and temperature. Our results suggest that montane forests appear to be in a more advanced stage of colonisation and economic development, whereas lowland forests are closer to the colonisation frontier and to rapidly growing colonist populations. This study reinforces the idea that although the most common tropical drivers of deforestation are found in the Andes, these drivers operate differently when intraregional differences are considered.


Deforestation Andes GLM Montane forests Lowland forests Driving factors Colombia 



We acknowledge financial support from the Colombian Instituto Colombiano para el Desarrollo de las Ciencias-Colciencias for the support for mobility and academic cooperation. We are also grateful to the Conservation and Sustainable Use of Biodiversity in the Andes Region (GEF Project ID 774) that provided us with useful baseline information. Finally, thanks to C. Franco for her continuous help with GIS data handling.


  1. Achard F, Eva H, Stibig HJ, Mayaux P, Gallego J, Richards T, Malingreau JP (2002) Determination of deforestation rates of the world’s humid tropical forests. Science 297:999–1002CrossRefGoogle Scholar
  2. Aguiar AP, Camara G, Sobral MI (2007) Spatial statistical analysis of land-use determinants in the Brazilian Amazonia: exploring intra-regional heterogeneity. Ecol Model 209:169–188CrossRefGoogle Scholar
  3. Armenteras D, Rodríguez N (2007). Introducción. In: Armenteras D, Rodríguez N (eds) Monitoreo de los ecosistemas andinos 1985–2005: síntesis. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, pp 15–17Google Scholar
  4. Armenteras D, Gast F, Villareal H (2003) Andean forest fragmentation and the representativeness of protected natural areas in the eastern Andes, Colombia. Biol Conserv 113:245–256CrossRefGoogle Scholar
  5. Armenteras D, Rincón A, Ortiz N (2005) Ecological function assessment in the Colombian andean coffee-growing region. Sub-global assessment working paper. Millennium Ecosystem AssessmentGoogle Scholar
  6. Bradley A, Millington A (2008) Coca and colonists: quantifying and explaining forest clearance under coca and anti narcotics policy regimes. Ecol Soc 13(1):31. online: Google Scholar
  7. Braun G, Mutke J, Reder A, Barthlott W (2002) Biotope patterns, phytodiversity and forestlinde in the Andes, based on GIS and remote sensing data. In: Körner Ch, Spehn EM (eds) Mountain biodiversity, a global assessment. Parthenon Publishing, pp 75–90Google Scholar
  8. Brown K, Pearce DW (eds) (1994) The causes of tropical deforestation. UCL Press, LondonGoogle Scholar
  9. Bush MB, Silman MR, Urrego DH (2004) 48000 years of climate and forest change in a biodiversity hot spot. Science 303:827–829CrossRefGoogle Scholar
  10. Butler RA, Laurance WF (2008) New strategies for conserving tropical forests. Trends Ecol Evol 23:469–472CrossRefGoogle Scholar
  11. Câmara G, Dutra Aguiar MP, Escada MI, Amaral S, Carneiro T, Vieira Monteiro AM, Araújo R, Vieira I, Becker B, Laurance WF, Fearnside PM, Albernaz AK, Vasconcelos HL, Ferreira LV (2005) Amazonian deforestation models. Science 307:1043–1044. doi: 10.1126/science.307.5712.1043c CrossRefGoogle Scholar
  12. Cavelier J, Etter A (1995) Deforestation of montane forest in Colombia as result of illegal plantations of opium (Papaver somniferum). In: Churchill SP, Balslev H, Forero E, Luteyn JL (eds) Biodiversity and conservation of neotropical montane forest. The New York Botanical Garden, Bronx, pp 541–550Google Scholar
  13. Codhes (2005) Report on forced displacement in Colombia.
  14. Codhes (2005b) Consultoría para los derechos humanos y el desplazamiento. Monitoreo población desplazada 1999–2005.
  15. Departamento Administrativo Nacional de Estadística (1985,1993,2005) National Census of population for 1985, 1993 y 2005. ColombiaGoogle Scholar
  16. Etter A, McAlpine C, Pullar D, Possingham H (2005) Modeling the age of tropical moist forest fragments in heavily-cleared lowland landscapes of Colombia. For Ecol Manag 208:249–260CrossRefGoogle Scholar
  17. Etter A, McAlpine C, Wilson K, Phinn H (2006) Regional patterns of agricultural land use and deforestation in Colombia. Agric Ecosyst Environ 114:369–386CrossRefGoogle Scholar
  18. Etter A, McAlpine C, Possingham H (2008) Historical patterns and drivers of landscape change in Colombia since 1500: a regionalized spatial approach. Ann Assoc Am Geogr 98:2–23CrossRefGoogle Scholar
  19. Fearnside PM (1993) Deforestation in Brazilian Amazonia: the effect of population and land tenure. Ambio 22:537–545Google Scholar
  20. Fearnside PM (2000) Global warming and tropical land-use change: greenhouse gas emissions from biomass burning, decomposition and soils in forest conversion, shifting cultivation and secondary vegetation. Climatic Change 46:115–158CrossRefGoogle Scholar
  21. Fearnside PM (2005) Deforestation in Brazilian Amazonia: history, rates and consequences. Conserv Biol 19:680–688CrossRefGoogle Scholar
  22. Feres JC, Mancero X (2001) El Método de las Necesidades Básicas Insatisfechas (NBI) y sus Aplicaciones en América Latina. Naciones Unidas - CEPAL. Santiago de Chile, p 56Google Scholar
  23. Fjeldså J, Lambins E, Mertens B (1999) Correlation between endemism and local ecoclimatic stability documented by comparing andean bird distributions and remotely sensed land surface data. Ecography 22:63–78CrossRefGoogle Scholar
  24. Foley JA, Asner GP, Costa M, Coe MT, DeFries R, Gibbs HK, Howard EA, Olson S, Patz J, Ramankutty N, Snyder P (2007) Amazonia revealed: forest degradation and loss of ecosystem goods and services in the Amazon Basin. Front Ecol Environ 5:25–32CrossRefGoogle Scholar
  25. Galvis LA (2001) La topografía económica de Colombia. Centro de Estudios Económicos Regionales. Banco de La República. Cartagena, Colombia. 50 pGoogle Scholar
  26. Geist HJ, Lambin EF (2002) Proximate causes and underlying driving forces of tropical deforestation. Bioscience 52:143–150CrossRefGoogle Scholar
  27. Gomez-Peralta D, Oberbauer SF, McClain ME, Philippi TE (2008) Rainfall and cloud-water interception in tropical montane forests in the eastern Andes of Central Peru. For Ecol Manag 255:1315–1325CrossRefGoogle Scholar
  28. Grau HR, Aide M (2008) Globalization and Land use transitions in Latin America. Ecol Soc 13:16Google Scholar
  29. IDEAM, Instituto de Estudios Ambientales y Meteorologicos (2000) Informe Nacional del aguaGoogle Scholar
  30. IDEAM, Instituto de Estudios Ambientales y Meteorologicos (2006) Banco de datos de las estaciones meteorológicas del IDEAMGoogle Scholar
  31. Instituto Geográfico Agustín Codazi - IGAC (2005) 1:500.00 Official cartographyGoogle Scholar
  32. Instituto Geográfico Agustín Codazi (IGAC) and Corpoica (2002) Zonificación de los conflictos de uso de las tierras en Colombia. Escala 1:500.000Google Scholar
  33. Instituto Geográfico Agustín Codazzi (IGAC), Instituto Colombiano Agropecuario (ICA) (1985) Mapa de zonificación agroecológica de Colombia. Escala 1:1.500.000Google Scholar
  34. Karmalkar AV, Bradley RS, Diaz HF (2008) Climate change scenario for Costa Rica montane forests. Geophys Res Lett 35:L11702. doi: 10.1029/2008GL033940 CrossRefGoogle Scholar
  35. Keese J, Mastin T, Yun D (2007) Identifying and assessing tropical montane forests on the eastern flank of the Ecuadorian andes. J Latin Am Geogr 6:63–94CrossRefGoogle Scholar
  36. Killeen TJ, Solorzano LA (2008) Conservation strategies to mitigate impacts from climate change in Amazonia. Phil Trans R Soc B 363:1881–1888CrossRefGoogle Scholar
  37. Kindermann G, Obersteiner M, Sohngen B, Sathaye J, Andrasko K, Rametsteiner E, Schlamadinger B, Wunder S, Beach R (2008) Global cost estimates of reducing carbon emissions through avoided deforestation. Proc Natl Acad Sci U S A 105:10302–10307CrossRefGoogle Scholar
  38. Kintz DB, Young KR, Crews-Meyer KA (2006) Implications of land use/land cover change in the buffer zone of a national park in the Tropical Andes. Environ Manage 38:238–252CrossRefGoogle Scholar
  39. Kirby KR, Laurance WF, Albernaz A, Schroth G, Fearnside PM, Bergen S, Venticinque EM, da Costa C (2006) The future of deforestation in the Brazilian Amazon. Futures 38:432–453CrossRefGoogle Scholar
  40. Leica Geosystems (2005) ERDAS Imagine 9.1. Leica Geosystems, GIS and mapping division. Atlanta, GeorgiaGoogle Scholar
  41. Malhi Y, Roberts JT, Betts RA, Killeen TJ, Li W, Nobre C (2008) Climate change, deforestation, and the fate of the Amazon. Science 319:169–172. doi: 10.1126/science.1146961 CrossRefGoogle Scholar
  42. Mas JF, Puig H, Palacio JL, Sosa-López A (2004) Modelling deforestation using GIS and artificial neural networks. Environ Model Softw 461–471Google Scholar
  43. Meidinger DV (2003) Protocol for accuracy assessment of ecosystem maps. Res. Br.B.C. Min. For. Victoria, B.C. Technical report 011Google Scholar
  44. Mittermeier RA, Myers N, Mittermeier CG (1999) Biodiversidad amenazada. Las ecoregiones terrestres prioritarias del Mundo. Cemex y Conservación InternacionalGoogle Scholar
  45. Morales M (2007) Representatividad ecosistémica del Sistema de Parques Nacionales Naturales en los Andes colombianos. In: Armenteras D, Rodríguez N (eds) Monitoreo de los ecosistemas andinos 1985–2005: síntesis. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, pp 67–74Google Scholar
  46. Myers N (1993) Tropical forests: the main deforestation fronts. Environ Conserv 20:9–16CrossRefGoogle Scholar
  47. Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:852–858CrossRefGoogle Scholar
  48. Naidoo R, Balmford A, Costanza R, Fisher B, Green RE, Lehner B, Malcolm TR, Ricketts TH (2008) Ecosystem services special feature: global mapping of ecosystem services and conservation priorities. Proc Natl Acad Sci U S A 105:9495–9500CrossRefGoogle Scholar
  49. Olson DM, Dinerstein E (2002) The Global 200: priority ecoregions for global conservation. Ann Missouri Bot Garden 89:199–224CrossRefGoogle Scholar
  50. Ramos VA (1999) Plate tectonic setting of the Andean Cordillera. Episodes 22:83–190Google Scholar
  51. Rodríguez N, Armenteras D, Morales M, Romero M (2006) Ecosistemas de los Andes colombianos. Segunda edición. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt. Bogotá, Colombia, 154 pGoogle Scholar
  52. Rudel TK (2006) Shrinking tropical forests, human agents of change and conservation policy. Conserv Biol 20:1604–1609CrossRefGoogle Scholar
  53. Rudel TK (2007) Changing agents of deforestation: from state-initiated to enterprise driven processes, 1970–2000. Land Use Policy 24:35–41CrossRefGoogle Scholar
  54. Rudel T, Roper J (1997) The paths to rain forest destruction: crossnational patterns of tropical deforestation, 1975–1990. World Dev 25:53–65CrossRefGoogle Scholar
  55. Rudel TK, Defries R, Asner GP, Laurance WF (2009) Changing drivers of deforestation and new opportunities for conservation. Conserv Biol 23:1396–1405CrossRefGoogle Scholar
  56. Santilli M, Moutinho P, Schwartzman S, Nepstad D, Curran L, Nobre C (2004) Tropical deforestation and the Kyoto protocol. Clim Change 71:267–276CrossRefGoogle Scholar
  57. United Nations Office on Drugs and Crime (UNODC) (2006) Colombia: monitoreo de cultivos de cocaGoogle Scholar
  58. Vance C, Iovanna R (2006) Analyzing spatial hierarchies in remotely sensed data: insights from a multilevel model of tropical deforestation. Land Use Policy 23:226–236. doi: 10.1016/j.landusepol.2005.02.002 CrossRefGoogle Scholar
  59. Vera-Diaz MC, Kaufmann RK, Nepstad DC, Schlesinger P (2008) An interdisciplinary model of soybean yield in the Amazon Basin: the climatic, edaphic, and economic determinants. Ecol Econ 65:420–431. doi: 10.1016/j.ecolecon.2007.07.015 CrossRefGoogle Scholar
  60. World Conservation Monitoring Centre (2000) Global biodiversity: Earth’s living resources in the 21st century. In: Groombridge B, Jenkins MD (eds) World Conservation Press, CambridgeGoogle Scholar
  61. Wright SJ (2005) Tropical forests in a changing environment. Trends Ecol Evol 20:553–560CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Dolors Armenteras
    • 1
    • 3
    Email author
  • Nelly Rodríguez
    • 1
    • 2
  • Javier Retana
    • 2
  • Mónica Morales
    • 1
  1. 1.Unidad de Ecología, Departmento de Biología, Facultad de CienciasColombia National UniversityBogotáColombia
  2. 2.Centre de Recerca Ecològica i Aplicacions Forestals (CREAF) i Unitat d’EcologíaUniversitat Autònoma de BarcelonaBellaterra, BarcelonaSpain
  3. 3.Department of Biology, Sciences FacultyColombia National UniversityBogotáColombia

Personalised recommendations