Regional Environmental Change

, Volume 10, Issue 3, pp 233–246 | Cite as

Shifting maize cultivation and secondary vegetation in the Southern Yucatán: successional forest impacts of temporal intensification

  • Birgit Schmook
Original Article


Shifting cultivation around the Calakmul Biosphere Reserve of Mexico, part of the Mesoamerican Biological Corridor, appears to be intensifying temporally through reductions in crop–fallow cycles, with potential impacts on species diversity in the regenerating forest patches surrounding the reserve. This paper documents the temporal intensity of shifting maize cultivation in the region and links it to the species diversity found in secondary vegetation of different ages following different crop–fallow cycles. It finds that younger secondary growth, which is increasing under intensification, has less diversity in species composition. Simultaneously, the concentration of cultivation practices appears to foster more patches in older and more species-diverse vegetation. The implications for the preservation of the region’s forest remain uncertain, however, given the spatial concentration of open lands along two key axes, one which dissects the reserve.


Seasonally dry tropical forests Shifting cultivation Agricultural intensification Calakmul Biosphere Reserve Biodiversity 



I thank B. L. Turner II, Deborah Lawrence, Hans Vester, Rebecca Dickson and Mirna Canul Montañez for their comments on previous drafts. Special thanks go to Dalia Hoil Villalobos who assisted me with species counts in secondary forest and to the kind farmers in the SY who put up with long hours of interviewing. I also thank two anonymous reviews who provide excellent direction in the development of this paper. Core funding for the Southern Yucatán Peninsular Region project from 1997 to 2009 was provided by NASA’s LCLUC program (NAG 56046, 511134, 06GD98G) and NSF’s BCS program (0410016). An additional sponsor of the research reported in this paper was the Mexican National Commission for the Knowledge and Use of Biodiversity, CONABIO (BJ002). The project is indebted to assistance provided by our host institution in Mexico, El Colegio de la Frontera Sur, especially Unidad Chetumal.


  1. Abizaid C, Coomes OT (2004) Land use and forest fallowing dynamics in seasonally dry tropical forests of the southern Yucatán Peninsula, Mexico. Land Use Policy 21:71–84CrossRefGoogle Scholar
  2. Álvarez-Yépiz JC, Martinez-Yrizar A, Burquez A, Linquist C (2008) Variation in vegetation structure and soil properties related to land use history of old-growth and secondary tropical dry forest in northwestern Mexico. For Ecol Manag 256:355–366CrossRefGoogle Scholar
  3. Boserup E (1965) The conditions of agricultural growth: the economics of agrarian change under population pressure. Aldine-Atherton, ChicagoGoogle Scholar
  4. Boserup E (1988) Population growth as a stimulant to agricultural development. In: Steinmann G, Zimmermann KF, Heilig G (eds) Probleme und Chancen demographischer Entwicklungen in der dritten Welt. Springer, New York, pp 61–75Google Scholar
  5. Brookfield HC (1984) Intensification revisited. Pac View 25:15–44Google Scholar
  6. Brookfield HC (1993) Notes on the theory of land management. PLEC News Views 1:28–32Google Scholar
  7. Brown S, Lugo AE (1990) Tropical secondary forests. J Trop Ecol 6:1–32CrossRefGoogle Scholar
  8. Brown D, Schreckenberg K (1998) Shifting cultivators as agents of deforestation: assessing the evidence. Nat Resour Perspect 29:1–14Google Scholar
  9. Burgos A, Maass JM (2004) Vegetation change associated with land-use in tropical dry forest areas of Western México. Agric Ecosyst Environ 104:475–481CrossRefGoogle Scholar
  10. Centeno ELR (1989) Análisis estructural de cuatro etapas sucesionales de selva mediana subperennifolia en la región de Escárcega, Campeche. Tesis de Licenciatura, Universidad Autónoma de Chapingo, Estado de México, MéxicoGoogle Scholar
  11. Chavelas-Pólito J (1968) Estudio florístico-sinecológico del campo experimental forestal “El Tormento”, Escárcega, Campeche. In: Comisión de estudios sobre la ecología de Dioscóreas. Instituto nacional de Investigaciones Forestales, V Informe, México, D.F., pp 130–221Google Scholar
  12. Chavelas-Pólito J, Contreras G (1990) Caracterización de la estructura de acahuales de diferentes edades. Taller internacional sobre investigación en silvicultura y manejo de selvas. SARH/INIFAP, México, D.F., MéxicoGoogle Scholar
  13. Chidumayo EN (1987) A shifting cultivation land use system under population pressure in Zambia. Agrofor Syst 5:15–25CrossRefGoogle Scholar
  14. Daily GC, Ceballos G, Pacheco J, Suzan G, Sánchez-Azofeifa A (2003) Countryside biogeography of neotropical mammals: conservation opportunities in agricultural landscapes of Costa Rica. Conserv Biol 17:1814–1826CrossRefGoogle Scholar
  15. DeFries R, Hansen A, Turner BL II, Reid R, Liu J (2007) Land use change around protected areas: management to balance human needs and ecological function. Ecol Appl 17:1031–1038CrossRefGoogle Scholar
  16. Doolittle WE (1984) Agricultural change as an incremental process. Ann Ass Am Geogr 74:124–137CrossRefGoogle Scholar
  17. Eastmond A, Faust B (2006) Farmers, fires and forests: a green alternative to shifting cultivation for conservation of the Maya forest. Landsc Urban Plan 74:267–284CrossRefGoogle Scholar
  18. Ewel JJ (1977) Differences between wet and dry successional tropical ecosystems. Geo Eco Trop 1:103–117Google Scholar
  19. Ewel JJ (1980) Tropical succession: manifold routes to maturity. Biotropica 12:2–7CrossRefGoogle Scholar
  20. Figueroa F, Sánchez-Cordero V (2008) Effectiveness of natural protected areas to prevent land use and land cover change in México. Biodivers Conserv 17:3223–3240CrossRefGoogle Scholar
  21. Figueroa F, Sánchez-Cordero V, Meave JA, Trejo I (2009) Socio-economic context of land use and land cover change in Mexican biosphere reserves. Environ Conserv 3:180–191CrossRefGoogle Scholar
  22. Finegan B (1996) Pattern and process in neotropical secondary rain forests: the first hundred years of succession. Trends Ecol Evol 11:119–124CrossRefGoogle Scholar
  23. Foley JA, DeFries R, Asner GP, Barford C, Bonan G, Carpenter SR, Chapin F, Stuart C, Michael T, Daily GC, Gibbs HK, Helkowski JH, Holloway T, Howard EA, Kucharik CJ, Monfreda C, Patz JA, Prentice IC, Ramankutty N, Snyder PK (2005) Global consequences of land use. Science 309:570–574CrossRefGoogle Scholar
  24. Fujisaka S, Hurtado L, Uribe R (1996) A working classification of slash-and-burn agricultural systems. Agrofor Syst 34:151–169CrossRefGoogle Scholar
  25. Gehring C, Denich M, Vlek PLG (2005) Resilience of secondary forest regrowth after slash-and-burn agriculture in central Amazonia. J Trop Ecol 21:519–527CrossRefGoogle Scholar
  26. Gleave MB (1996) The length of the fallow period in tropical fallow farming systems: a discussion with evidence from Sierra Leone. Geogr J 162:14–24CrossRefGoogle Scholar
  27. González-Iturbe JA, Olmsted I, Tun Dzul F (2002) Tropical dry forest recovery after long term Henequen (sisal, Agave fourcroydes Lem.) plantation in northern Yucatan, Mexico. For Ecol Manag 167:67–82CrossRefGoogle Scholar
  28. Hallé F, Oldeman RA, Tomlinson PB (1978) Tropical trees and forests an architectural analysis. Springer, New YorkGoogle Scholar
  29. Haug GH, Günther D, Peterson LC, Sigman DM, Hughen KA, Aeschlimann B (2003) Climate and the collapse of Maya civilization. Science 299:1731–1735CrossRefGoogle Scholar
  30. Ickowitz A (2006) Shifting cultivation and deforestation in tropical Africa: critical reflections. Dev Change 37:599–626CrossRefGoogle Scholar
  31. Illsley CE, Hernández-Xolocotzi E (1982) La vegetación en relación a la producción agrícola en el ejido de Yaxcaba, Yucatán. In: Hernández Xolocotzi E, Padilla I, Ortega R (eds) Seminario sobre producción agrícola en Yucatán. Gobierno del Estado de Yucatán, Mérida, México, pp 343–371Google Scholar
  32. Joosten JHL (1962) Wirtschaftliche und agrarpolitische Aspekte tropischer Landbausysteme (mimeo). Institut für landwirtschaftliche Betriebslehre, Göttingen, GermanyGoogle Scholar
  33. Kennard DK (2002) Secondary forests succession in a tropical dry forest: patterns of development across a 50-year chronosequence in lowland Bolivia. J Trop Ecol 18:53–66CrossRefGoogle Scholar
  34. Klepeis P, Vance C, Keys E, Macario Mendoza P, Turner BL II (2004) Subsistence sustained: swidden or milpa cultivation. In: Turner BL II, Geoghegan J, Forster DR (eds) Integrated land-change science and tropical deforestation in the southern Yucatán: final frontiers. Oxford University Press, Oxford, pp 189–207Google Scholar
  35. Lawrence D (2004) Erosion of tree diversity during 200 years of shifting cultivation in Bornean rain forest. Ecol Appl 14:1855–1869CrossRefGoogle Scholar
  36. Lawrence D (2005) Biomass accumulation after 10–200 years of shifting cultivation in Bornean rain forest. Ecology 86:26–33CrossRefGoogle Scholar
  37. Lawrence D, Suma V, Mogea JP (2005) Change in species composition with repeated shifting cultivation: limited role of soil nutrients. Ecol Appl 15:1952CrossRefGoogle Scholar
  38. Lawrence D, D’Odorico P, Diekmann L, DeLonge M, Das R, Eaton J (2007) Ecological feedbacks following deforestation create the potential for a catastrophic ecosystem shift in tropical dry forest. Proc Natl Acad Sci 104:20696–20701CrossRefGoogle Scholar
  39. Lebrija-Trejos E, Bongers F, Perez-Garcia EA, Meave JA (2008) Successional change and resilience of very dry tropical deciduous forest following shifting agriculture. Biotropica 40:422–431Google Scholar
  40. Levy-Tacher S (1990) Sucesión secundaria en Yucatán: antecedentes para su manejo. Tesis de Maestría. Colegio de Postgraduados, Chapingo, Estado de México, MéxicoGoogle Scholar
  41. Manzanilla H (1980) Los sitios permanentes de investigación silvícola del INIFAP. Un sistema integrado para iniciarse en el cultivo de los ecosistemas forestales. SARH-SDFAF-INIFAP, México, D.F., MéxicoGoogle Scholar
  42. Marín-Spiotta E, Ostertag R, Silver WL (2007) Long-term patterns in tropical reforestation: plant community composition and aboveground biomass accumulation. Ecol Appl 17:828–839CrossRefGoogle Scholar
  43. McConnel W, Keys E (2005) Meta-analysis of agricultural change. In: Moran E, Ostrom E (eds) Seeing the forest and the trees. MIT Press, Cambridge, MA, pp 325–353Google Scholar
  44. McLaren KP, McDonald MA (2003) Coppice regrowth in a disturbed tropical dry limestone forest in Jamaica. For Ecol Manag 180:99–111CrossRefGoogle Scholar
  45. MEA-Millennium Ecosystem Assessment (2005) Ecosystems and human well-being: synthesis. Island Press, Washington, DCGoogle Scholar
  46. Mertz O (2002) The relationship between fallow length and crop yields in shifting cultivation: a rethinking. Agrofor Syst 55:149–159CrossRefGoogle Scholar
  47. Mertz O, Wadley RL, Nielsen U, Bruun TB, Colfer CJP, De Neergaard A, Jepsen MR, Martinussen T, Zhao Q, Noweg GT, Magid J (2008) A fresh look at shifting cultivation: fallow length an uncertain indicator of productivity. Agric Syst 96:75–84CrossRefGoogle Scholar
  48. Mertz O, Leisz SJ, Heinimann A, Rerkasem K, Thiha, Dressler W, Pham VC, Vu KC, Schmidt-Vogt D, Colfer CJP, Epprecht M, Padoch C, Potter L (2009) Who counts? Demography of swidden cultivators in Southeast Asia. Hum Ecol. doi: 10.1007/s1074450099249y
  49. Miranda F, Hernández Xolocotzi E (1963) Los tipos de vegetación de México y su clasificación. Bol Soc Bot Mexico 28:29–179Google Scholar
  50. Murphy PG, Lugo AE (1986a) Ecology of tropical dry forests. Annu Rev Ecol Syst 17:67–88CrossRefGoogle Scholar
  51. Murphy PG, Lugo AE (1986b) Structure and biomass of a subtropical dry forest in Puerto Rico. Biotropica 18:89–96CrossRefGoogle Scholar
  52. Murphy PG, Lugo AE (1995) Dry forests of Central America and the Caribbean. In: Bullock S, Mooney HA, Medina E (eds) Seasonally dry tropical forests. Cambridge University Press, Cambridge, pp 9–34CrossRefGoogle Scholar
  53. Netting RM (1993) Smallholders, householders: farm families and the ecology of intensive, sustainable agriculture. Stanford University Press, Stanford, CAGoogle Scholar
  54. Ochoa-Gaona S, Hernández-Vázquez F, de Long BHJ, Gurri-García FD (2007) Pérdida de diversidad florística ante un gradiente de intensificación del sistema agrícola de roza-tumba y quema: un estudio de caso en la Selva Lacandona, Chiapas, México. Bol Soc Bot Mexico 81:65–80Google Scholar
  55. Odum EP (1985) Ecología. Interamericana S.A de C.V, México, D.F., pp 158–178Google Scholar
  56. Pascual U, Barbier EB (2006) Deprived land-use intensification in shifting cultivation: the population pressure hypothesis revisited. Agric Econ 34:155–165CrossRefGoogle Scholar
  57. Peña-Claros M (2003) Changes in forest structure and species composition during secondary forest succession in the Bolivian Amazon. Biotropica 4:450–461Google Scholar
  58. Pennington TD, Sarukhán J (1998) Árboles tropicales de México: Manual para la identificación de las principales especies. Universidad Nacional Autónoma de México y Fondo de Cultura Económica, México, D.F., p 521Google Scholar
  59. Pérez-Salicrup DR (2004) Forest types and their implications. In: Turner BL II, Geoghegan J, Forster DR (eds) Integrated land-change science and tropical deforestation in the southern Yucatán: final frontiers. Oxford University Press, Oxford, pp 63–80Google Scholar
  60. Pinard MA, Putz FE, Rumiz D, Guzman R, Jardin A (1999) Ecological characterization of tree species for guiding forest management decisions in seasonally dry forests in Lomerio, Bolivia. For Ecol Manag 113:201–213CrossRefGoogle Scholar
  61. Radel C, Schmook B (2008) Male transnational migration and its linkages to land use change in a southern Campeche ejido. J Lat Am Geogr 7:59–84Google Scholar
  62. Romero-Duque LP, Jaramillo VJ, Pérez-Jiménez A (2007) Structure and diversity of secondary tropical dry forests in Mexico, differing in their prior land-use history. For Ecol Manag 253:38–47CrossRefGoogle Scholar
  63. Roy Chowdhury R, Turner BL II (2006) Reconciling agency and structure in empirical analysis: smallholder land use in the southern Yucatán, Mexico. Ann Ass Am Geogr 96:302–322CrossRefGoogle Scholar
  64. Ruthenberg H (1980) Farming systems in the tropics. Claredon Press, OxfordGoogle Scholar
  65. Saldarriaga JG, West DC, Tharp ML, Uhl C (1988) Long-term chronosequence of forest succession in the upper Rio Negro of Colombia and Venezuela. J Ecol 76:938–958CrossRefGoogle Scholar
  66. Sánchez PA (1976) Properties and management of soils in the tropics. Wiley, New YorkGoogle Scholar
  67. Sarukhán J, Hernández Xolocotzi E (1970) Sinecología de las selvas de Terminalia amazonia en la vertiente del Golfo de México: análisis de la metodología de estudio. Bol Inst For Latinoamericano 34:3–20Google Scholar
  68. Schneider L, Geoghegan J (2006) Land abandonment in an agricultural frontier after a plant invasion: the case of bracken fern in southern Yucatán, Mexico. Agric Res Econ Rev 35:1–11Google Scholar
  69. Sheil D (2001) Conservation and biodiversity monitoring in the tropics: realities, priorities, and distractions. Conserv Biol 15:1179–1182CrossRefGoogle Scholar
  70. Shriar AJ (2000) Agricultural intensity and its measurement in frontier regions. Agrofor Syst 49:301–318CrossRefGoogle Scholar
  71. Sosa V, Flores S, Rico-Gray V, Lira R, Ortiz JJ (1985) Etnoflora yucatanense. Lista florística y sinonimia maya. Fascículo 1. Instituto Nacional de Investigaciones sobre Recursos Bióticos (INIREB), Xalapa, Veracruz, MéxicoGoogle Scholar
  72. Téllez-Valdés O, Sousa-Sánchez M, Cabrera E (1982) Imágenes de la Flora Quintanarroense. CIQRO, Puerto Morelos, Quintana Roo, MéxicoGoogle Scholar
  73. Turner BL II (2009) Sustainability and forest transitions in the southern Yucatán: the land architecture approach. Land Use Policy. doi: 10.1016/j.landusepol.2009.03.006
  74. Turner BL II, Brush SB (1987) Comparative farming systems. Guilford Press, New YorkGoogle Scholar
  75. Turner BL II, Doolittle WE (1978) The concept and measure of agricultural intensity. Prof Geogr 30:297–301CrossRefGoogle Scholar
  76. Turner BL II, Hanham RD, Portararo AV (1977) Population pressure and agricultural intensity. Ann Ass Am Geogr 67:384–396CrossRefGoogle Scholar
  77. Turner BL II, Lambin EF, Reenberg A (2007) The emergence of land change science for global environmental change and sustainability. Proc Natl Acad Sci 104:20666–20671CrossRefGoogle Scholar
  78. Valdéz-Hernández M, Sánchez-Sánchez O, Islebe G (2008) Recovery and succession in a dry tropical forest of southeastern México (unpublished manuscript)Google Scholar
  79. Vester HFM (1997) The trees and the forest. The role of tree architecture in canopy development; a case study in secondary forests (Araracuara, Colombia). Academisch Proefschrift, The NetherlandsGoogle Scholar
  80. Vester HFM, Lawrence D, Eastman JR, Turner BL II, Calmé S, Dickson R, Pozo C, Sangermano F (2007) Land change in the southern Yucatán and Calakmul biosphere reserve: implications for habitat and biodiversity. Ecol Appl 17:989–1003CrossRefGoogle Scholar
  81. Vieira DLM, Scariot A (2006) Principles of natural regeneration of tropical dry forest for restoration. Restor Ecol 14:11–20CrossRefGoogle Scholar
  82. Weterings MJA, Weterings-Schonck SM, Vester HFM, Calmé S (2008) Senescence of Manilkara zapota trees and implications for large frugivorous birds in the Southern Yucatan Peninsula, Mexico. For Ecol Manag 256:1604–1611CrossRefGoogle Scholar
  83. Whitmore TC (1975) Tropical rain forests of the Far East. Oxford Clarenton Press, LondonGoogle Scholar
  84. Wilken GC (1987) Good farmers: traditional agricultural resource management in México and Central America. University of California Press, BerkeleyGoogle Scholar
  85. Wittemyer G, Elsen P, Bean WT, Burton ACO, Brashares JS (2008) Accelerated human population growth at protected area edges. Science 321:123–126CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.El Colegio de la Frontera SurChetumalMexico

Personalised recommendations