Regional Environmental Change

, Volume 10, Issue 4, pp 327–338 | Cite as

Modeling thermoelectric power generation in view of climate change

Original Article

Abstract

In this study we investigate how thermal power plants with once-through cooling could be affected by future climate change impacts on river water temperatures and stream flow. We introduce a model of a steam turbine power plant with once-through cooling at a river site and simulate how its production could be constrained in scenarios ranging from a one degree to a five degree increase of river temperature and a 10–50% decrease of stream flow. We apply the model to simulate a large nuclear power plant in Central Europe. We calculate annual average load reductions, which can be up to 11.8%, assuming unchanged stream flow, which leads to average annual income losses of up to 80 million €. Considering simultaneous changes in stream flow will exacerbate the problem and may increase average annual costs to 111 million € in a worst-case scenario. The model demonstrates that power generation could be severely constrained by typical climate impacts, such as increasing river temperatures and decreasing stream flow.

Keywords

Climate change Nuclear power Water demand Cooling Thermoelectric power 

References

  1. atw (2009) Kernkraftwerke in Deutschland. Betriebsergebnisse 2008. Int J Nucl Power, pp 1–43Google Scholar
  2. Battaglini A, Lilliestam J, Haas A, Patt A (2009) Development of supersmart grids for a more efficient utilisation of electricity from renewable sources. J Clean Prod 17(10):911–918CrossRefGoogle Scholar
  3. Beniston M (2004) The 2003 heat wave in Europe: a shape of things to come? An analysis based on swiss climatological data and model simulations. Geophys Res Lett 31(2):L02202. doi:10.1029/2003GL018857
  4. Bundesamt für Strahlenschutz (2009) Kernkraftwerke in der Bundesrepublik DeutschlandGoogle Scholar
  5. Deutsches Atomforum e.V. (2006) Kernenergie in Deutschland. Jahresbericht, Deutsches Atomforum e.V.Google Scholar
  6. Dziegielewski B, Bik T (2006) Water use benchmarks for thermoelectric power generation. Research report, Southern Illinois University CarbondaleGoogle Scholar
  7. EEA (2008) Impacts of Europe’s changing climate—2008 indicator-based assessment. EEA report 4/2008, European Environment AgencyGoogle Scholar
  8. Elash A (2007) Will France be caught with its plants down? The Globe. http://www.theglobeandmail.com/servlet/story/LAC.20070622.NUKE22/TPStory/Environment
  9. e.on (2007) Zahlen zum Betrieb der E.ON Kernkraftwerke 2007. Report, e.onGoogle Scholar
  10. Europäische Gemeinschaft (2006) Richtlinie 2006/44/EG des Europäischen Parlaments und des Rates vom 6. September 2006 über die Qualität von Süsswasser, das schutz-und verbesserungsbedürftig ist, um das Leben von Fischen zu erhaltenGoogle Scholar
  11. European Community (2000) Directive 2000/60/EC of the European parliament and of the council of 23 October 2000 establishing a framework for community action in the field of water policyGoogle Scholar
  12. Feeley TJ et al. (2008) Water: a critical resource in the thermoelectric power industry. Energy 33:1–11CrossRefGoogle Scholar
  13. Gesetz zur geordneten Beendigung der Kernenergienutzung zur gewerblichen Erzeugung von Elektrizität (2002) Gesetz zur geordneten Beendigung der Kernenergienutzung zur gewerblichen Erzeugung von Elektrizität vom 22. April 2002Google Scholar
  14. Godoy J (2006) European heat wave shows limits of nuclear energy. One World. http://www.commondreams.org/headlines06/0728-06.htm
  15. Hamburger Abendblatt (2007) Elbe zu warm—Krümmel drosselt Leistung. Hamburger AbendblattGoogle Scholar
  16. Hightower M, Pierce SA (2008) The energy challenge. Nature 452(20):285–286CrossRefGoogle Scholar
  17. IAEA (2006a) Installed capacity of electrical plants: France. http://www.iaea.org/inisnkm/nkm/aws/eedrb/data/FR-elic.html
  18. IAEA (2006b). Nuclear power reactors in the world. Data series, International Atomic Energy AgencyGoogle Scholar
  19. Iglesias A, Quiroga S (2007) Measuring the risk of climate variability to cereal production at five sites in Spain. Clim Res 34:47–57CrossRefGoogle Scholar
  20. Iglesias A et al. (2003). Water availability for agriculture under climate change: understanding adaptation strategies in the Mediterranean. In: Giupponi C, Shechter M (ed), Climate change in the Mediterranean. Edward Elgar, pp 75–93Google Scholar
  21. IPCC (2007) Climate change 2007: synthesis report. Report, Intergovernental Panel on Climate ChangeGoogle Scholar
  22. Isaac M, van Vuuren DP (2009) Modeling global residential sector energy demand for heating and air conditioning in the context of climate change. Energy Policy 37(2):507–521CrossRefGoogle Scholar
  23. Jowit J, Espinoza J (2006) Heatwave shuts down nuclear power plants. The Observer. http://www.guardian.co.uk/environment/2006/jul/30/energy.weather
  24. Kanter J (2007) Climate change puts nuclear energy into hot water. The New York Times. http://www.nytimes.com/2007/05/20/health/20ihtnuke.1.5788480.html?_r=1
  25. Koch H, Vögele S (2009) Dynamic modelling of water demand, water availability and adaptation strategies for power plants to global change. Ecol Econ 68(7):2031–2039CrossRefGoogle Scholar
  26. Mediterranean Water Scarcity and Drought Working Group (2007) Mediterranean water scarcity and drought report. Technical report, Mediterranean Water Scarcity and Drought Working Group, AprilGoogle Scholar
  27. Mirasgedis S, Sarafidis Y, Georgopoulou E, Kotroni V, Lagouvardos K, Lalas DP (2007) Modeling framework for estimating impacts of climate change on electricity demand at regional level: case of Greece. Energy Convers Manag 48(5):1737–1750CrossRefGoogle Scholar
  28. Moneo M (2007) Drought and climate change impacts on water resources: management alternatives. Dissertation, University of MadridGoogle Scholar
  29. Müller U, Greis S, Rothstein B (2007) Impacts on water temperatures of selected German rivers and on electricity production of thermal power plants due to climate change, October 15/6Google Scholar
  30. Pagnamenta R (2009) France imports UK electricity as plants shut. Times Online, July 3Google Scholar
  31. Raupach MR, Marland G, Ciais P, Le Quere C, Canadell JG, Klepper G, Field CB (2007) Global and regional drivers of accelerating CO2 emissions. PNAS 104(24):10288–10293CrossRefGoogle Scholar
  32. Rebetez M, Dupont O, Giroud M (2009) An analysis of the July 2006 heatwave extent in Europe compared to the record year of 2003. Theor Appl Climatol 95(1-2):1–7CrossRefGoogle Scholar
  33. Ruth M, Lin AC (2006) Regional energy demand and adaptations to climate change: methodology and application to the state of Maryland, USA. Energy Policy 34(17):2820–2833CrossRefGoogle Scholar
  34. Stott PA, Stone D, Allen M (2004) Human contribution to the European heatwave of 2003. Nature 432:610–613Google Scholar
  35. Sturm R (1995) Why does nuclear-power performance differ across Europe. Eur Econ Rev 39(6):1197–1214CrossRefGoogle Scholar
  36. Umweltbundesamt and iöw (2009) Dialoge zur Klimaanpassung: Energiewirtschaft. In: Dialoge zur Klimaanpassung. Eine Veranstaltungsreihe zu Chancen und Risiken des Klimawandels, Dessau. UmweltbundesamtGoogle Scholar
  37. Vattenfall Europe (2006) Kernkraftwerk Krümmel. Innovativ und klimafreundlich. Technical report, Vattenfall EuropeGoogle Scholar
  38. Vattenfall Europe (2008) Kernkraftwerk Krümmel. Technical report, Vattenfall EuropeGoogle Scholar
  39. Wasser-und Schifffahrtsverwaltung des Bundes (2008) Hydrologie/Abfluss: Neu Darchau. June 15Google Scholar
  40. Wassergütestelle Elbe (2008) Wassertemperatur Elbe: Schnackenburg, NovemberGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Potsdam Institute for Climate Impact ResearchPotsdamGermany

Personalised recommendations