Advertisement

Regional Environmental Change

, Volume 10, Issue 2, pp 83–94 | Cite as

Potentials and impacts of short-rotation coppice plantation with aspen in Eastern Germany under conditions of climate change

  • Petra Lasch
  • Chris Kollas
  • Joachim Rock
  • Felicitas Suckow
Original Article

Abstract

Woody biomass generated in short-rotation coppice (SRC) plantations with aspen (Populus tremula L.) has good properties for bioenergy crop production: annual yields are high, labour input per year is low, and it is ecologically valuable because of the multi-year rotation periods. Eastern Germany has a special advantage in producing bioenergy crops: the former “agricultural cooperatives” built up quite large farms with, compared to Western Germany, comparatively large fields. Therefore, a modelling study of the potential and the impacts of aspen SRC plantations in the five eastern federal states of Germany under the recent climate and future climate projections was conducted. The ecophysiological forest growth model 4C was used to simulate the growth of aspen SRC plantations and their impacts on carbon in soils, and groundwater recharge, on selected suitable areas currently under crops but with marginal site conditions for cropping. A clear signal to enhanced growth condition over the whole area can be seen in the simulation of the mean annual woody biomass yield under conditions of climate change, which increased from 7.47 t DW ha−1 a−1 under the recent climate to 9.26 t DW ha−1 a−1 at the end of the considered future period 2034–2055 under climate change. The mean soil carbon sequestration rate was 0.81 t C ha−1 a−1 under the recent climate and could rise up to 0.93 t C ha−1 a−1 under the assumption of climate change. On the other hand, the mean annual percolation rate, used as an indicator of impacts on the regional water budget, will diminish under future climatic conditions. The results suggest that aspen SRC plantations are a suitable contribution to regional CO2 mitigation and carbon sequestration under possible change of climate, but that negative impacts on the regional water budget are possible.

Keywords

SRC Bioenergy Carbon sequestration Groundwater recharge Aspen Biomass production 

Notes

Acknowledgments

This work was partly funded by the BVVG (Bodenverwertungs- und verwaltungs GmbH). We thank our collaborators in this study Frank Wechsung, Peter C. Werner, F.-W. Gerstengarbe and A. Lüttger, for advice and assistance. An anonymous reviewer provided useful and constructive comments.

References

  1. Badeck FW, Beese F, Berthold D, Einert P, Jochheim H, Kallweit R, Konopatzky A, Lasch P, Meesenburg H, Meiwes K-J, Puhlmann M, Raspe S, Schulte-Bisping H, Schulz C, Suckow F (2007) Parametrisierung, Kalibrierung und Validierung von Modellen des Kohlenstoffumsatzes in Waldökosystemen und deren Böden. Abschlussbericht Forest Focus C2-Projekte DE 2003/2004 BB 5, DE 2003/2004 BY 4, DE 2003/2004 NI 6. Bayerische Landesanstalt für Wald und Forstwirtschaft, Institut für Bodenkunde und Waldernährung der Universität Göttingen, Landesforstanstalt Eberswalde, Leibniz-Zentrum für Agrarlandschaftsforschung, Nordwestdeutsche Forstliche Versuchsanstalt, Potsdam-Institut für KlimafolgenforschungGoogle Scholar
  2. Barigah TS, Saugier B, Mousseau M, Guittet J, Ceulemans R (1994) Photosynthesis, leaf-area and productivity of 5 poplar clones during their establishment year. Ann Sci For 51(6):613–625CrossRefGoogle Scholar
  3. Bemmann A, Feger K-H, Gerold D, Große W, Hartmann K-U, Petzold R, Röhle H, Schweile J, Steinke C (2007) Kurzumtriebsplantagen auf landwirtschaftlichen Flächen in der Region Großenhain im Freistaat Sachsen. Forstarchiv 78:95–101Google Scholar
  4. BGR (1998) Bodenübersichtskarte der Bundesrepublik Deutschland 1:100.000.000 (BÜK 1000). Bundesanstalt für Geowissenschaften und Rohstoffe, HannoverGoogle Scholar
  5. Bugmann H, Grote R, Lasch P, Lindner M, Suckow F (1997) A new forest gap model to study the effects of environmental change on forest structure and functioning. In: Mohren GMJ, Kramer K, Sabate S (eds) Impacts of global change of tree physiology and forest ecosystem. Proceedings of the international conference on impacts of global change on tree physiology and forest ecosystems, held 26–29 November 1996, Wageningen. Kluwer, Dordrecht, pp 255–261Google Scholar
  6. Bungart R, Hüttl RF (2004) Growth dynamics and biomass accumulation of 8-year-old hybrid poplar clones in a short-rotation plantation on a clayey-sandy mining substrate with respect to plant nutrition and water budget. Eur J For Res 123(2):105–115Google Scholar
  7. Davidson RL (1969) Effect of root/leaf temperature differentials on root/shoot ratios in some pasture grasses and clover. Ann Bot 33:561–569Google Scholar
  8. Deckmyn G, Laureysens I, Garcia J, Muys B, Ceulemans R (2004a) Poplar growth and yield in short-rotation coppice: model simulations using the process model SECRETS. Biomass Bioenerg 26(3):221–227CrossRefGoogle Scholar
  9. Deckmyn G, Muys B, Garcia Quijano J, Ceulemans R (2004b) Carbon sequestration following afforestation of agricultural soils: comparing oak/beech forest to short-rotation poplar coppice combining a process and a carbon accounting model. Glob Change Biol 10(9):1482–1491CrossRefGoogle Scholar
  10. Deutscher Bundestag (2004) Gesetz für den Vorrang erneuerbarer Energien. BGBl 2004 I Nr. 40, 1918–1930Google Scholar
  11. Deutscher Bundestag (2007) Gesetz zur Schätzung des landwirtschaftlichen Kulturbodens. BGBl I Nr.69, 3150, 3176Google Scholar
  12. EEA (2006) How much bioenergy can Europe produce without harming the environment? European Environment Agency. EEA Report 7/2006, CopenhagenGoogle Scholar
  13. Eswaran H, Vandenberg E, Reich P (1993) Organic-carbon in soils of the world. Soil Sci Soc Am J 57(1):192–194CrossRefGoogle Scholar
  14. Franko U, Oelschlägel B, Schenk S (1995) Simulation of temperature-, water-, and nitrogen dynamics using the model CANDY. Ecol Model 81:213–222CrossRefGoogle Scholar
  15. Fürstenau C, Badeck F, Lasch P, Lexer M, Lindner M, Mohr P, Suckow F (2007) Multiple-use forest management in consideration of climate change and the interests of stakeholder groups. Eur J For Res 126(2):225–239Google Scholar
  16. Glugla G (1969) Berechnungsverfahren zur Ermittlung des aktuellen Wassergehaltes und Gravitationswasserabflusses im Boden. Albrecht Thaer Arch 13:371–376Google Scholar
  17. Grant RF, Black TA, Gaumont-Guay D, Kljun N, Barrc AG, Morgenstern K, Nesic Z (2006) Net ecosystem productivity of boreal aspen forests under drought and climate change: mathematical modelling with ecosys. Agric For Meteorol 140(1–4):152–170CrossRefGoogle Scholar
  18. Grigal DF, Berguson WE (1998) Soil carbon changes associated with short-rotation systems. Biomass Bioenerg 14(4):371–377CrossRefGoogle Scholar
  19. Grogan P, Matthews R (2002) A modelling analysis of the potential for soil carbon sequestration under short-rotation coppice willow bioenergy plantations. Soil Use Manag 18(3):175–183CrossRefGoogle Scholar
  20. Grote R, Suckow F (1998) Integrating dynamic morphological properties into forest growth modeling. I. Effects on water balance and gas exchange. For Ecol Manag 112:101–119CrossRefGoogle Scholar
  21. Guo LB, Gifford RM (2002) Soil carbon stocks and land use change: a meta-analysis. Glob Change Biol 8(4):345–360CrossRefGoogle Scholar
  22. Haferkorn U (2000) Größen des Wasserhaushaltes verschiedener Böden unter landwirtschaftlicher Nutzung im klimatischen Grenzraum des Mitteldeutschen Trockengebietes—Ergebnisse der Lysimeterstation Brandis -. Agrarwissenschaften. Georg-August-Universität Göttingen. DissertationGoogle Scholar
  23. Hansen EA (1993) Soil carbon sequestration beneath hybrid poplar plantations in the north central United States. Biomass Bioenerg 5(6):431–436CrossRefGoogle Scholar
  24. Hattermann FF, Post J, Krysanova V, Conradt T, Wechsung F (2008) Assessing uncertainty of water availability in a central-European river basin (Elbe) under climate change. Adv Clim Change Res 4:42–50Google Scholar
  25. Haxeltine A, Prentice IC (1996) A general model for the light-use efficiency of primary production. Funct Ecol 10(5):551–561CrossRefGoogle Scholar
  26. Hofmann M (1999) Bereitstellung von genetisch hochwertigem Vermehrungsgut für Kurzumtriebsbestände. In: Hofmann M (ed) Modellvorhaben “Schnellwachsende Baumarten”. Landwirtschaftsverlag GmbH, Münster, pp 151–239Google Scholar
  27. Jandl R, Lindner M, Vesterdal L, Bauwens B, Baritz R, Hagedorn F, Johnson DW, Minkkinen K, Byrne KA (2007) How strongly can forest management influence soil carbon sequestration? Geoderma 137(3–4):253–268CrossRefGoogle Scholar
  28. Janssens IA, Freibauer A, Ciais P, Smith P, Nabuurs GJ, Folberth G, Schlamadinger B, Hutjes RWA, Ceulemans R, Schulze ED, Valentini R, Dolman AJ (2003) Europe’s terrestrial biosphere absorbs 7 to 12% of European anthropogenic CO2 emissions. Science 300(5625):1538–1542CrossRefGoogle Scholar
  29. Kartschall T, Döring P, Suckow F (1989) Simulation of nitrogen, water and temperature dynamics in soil. Syst Anal Model Simul 7(6):33–40Google Scholar
  30. Kauter D, Lewandowski I, Claupein W (2003) Quantity and quality of harvestable biomass from Populus short-rotation coppice for solid fuel use: a review of the physiological basis and management influences. Biomass Bioenerg 24(6):411–427CrossRefGoogle Scholar
  31. Koitzsch R (1977) Schätzung der Bodenfeuchte aus meteorologischen Daten, Boden- und Pflanzenparametern mit einem Mehrschichtmodell. Z Meteor 27(5):302–306Google Scholar
  32. Landgraf D, Böcker L, Oldenburg C (2007a) Landwirte als Energieholz-Produzenten? AFZ-Der Wald 62(14):751–753Google Scholar
  33. Landgraf D, Ertle C, Böcker L (2007b) Stockausschlagpotential von Aspe und Robinie. AFZ-Der Wald 62(2):80–83Google Scholar
  34. Landsberg JJ, Waring RH (1997) A generalised model of forest productivity using simplified concepts of radiation use efficiency, carbon balance and partitioning. For Ecol Manag 95(3):209–228CrossRefGoogle Scholar
  35. Lasch P, Badeck FW, Suckow F, Lindner M, Mohr P (2005) Model-based analysis of management alternatives at stand and regional level in Brandenburg (Germany). For Ecol Manag 207(1–2):59–74CrossRefGoogle Scholar
  36. Lasch P, Suckow F, Badeck F-W (2007) Analyses of forest ecosystems’ response to climate change at level II monitoring sites. In: Eichhorn J (ed) Symposium: forests in a changing environment: results of 20 years ICP forests monitoring Göttingen, 25.-28.10.2006, Schriften aus der Forstlichen Fakultät der Universität Göttingen und der Nordwestdeutschen Forstlichen Versuchsanstalt, Band 142. J.D. Sauerländer’s Verlag Frankfurt am Main, pp 136–141Google Scholar
  37. Leibundgut H (1967) Pappeln als Baumarten des Vorwaldes. Mitteilungen der Schweizerische Pappel Arbeitsgemeinschaft 12:1–7Google Scholar
  38. Liedtke H (2004) Relief, Boden und Wasser. In: Nationalatlas Bundesrepublik Deutschland. Elsevier, MünchenGoogle Scholar
  39. Liesebach M, von Wühlisch G, Muhs HJ (1999a) Aspen for short-rotation coppice plantations on agricultural sites in Germany: effects of spacing and rotation time on growth and biomass production of aspen progenies. For Ecol Manag 121(1–2):25–39CrossRefGoogle Scholar
  40. Liesebach M, von Wühlisch G, Muhs H-J (1999b) Eignung der Baumart Aspe und Prüfung von Aspenhybriden für die Biomasseerzeugung in Kurzumtriebsplantagen. In: Hofmann M (ed) Modellvorhaben “Schnellwachsende Baumarten”. Landwirtschaftsverlag GmbH, Münster, pp 240–313Google Scholar
  41. Lindner M, Lasch P, Badeck F-W, Beguiristain PP, Junge S, Kellomäki S, Peltola H, Gracia C, Sabate S, Jäger D, Lexer M, Freeman M (2005) SilviStrat model evaluation exercises. In: Kellomäki S, Leinonen S (eds) Management of European forests under changing climatic conditions. Research notes 163. University of Joensuu, Faculty of Forestry, Joensuu, pp 117–157Google Scholar
  42. Mäkelä A, Sievänen R, Lindner M, Lasch P (2000) Application of volume growth and survival graphs in the evaluation of four process-based forest growth models. Tree Physiol 20:347–355Google Scholar
  43. Mohrdiek O (1977) Hybridaspen für forstliche Grenzertragsböden. Forstarchiv 48:158–163Google Scholar
  44. Murach D, Kindermann C, Hirschl B, Aretz A, Schneider B-U, Grünewald H, Schutze B, Quinkenstein A, Bilke G, Muchin A, Eberts J, Grundmann P, Jochheim H, Scherzer J, Hagemann H (2007) Zukunftsrohstoff Dendromasse- Hintergrund und erste Ergebnisse des Verbundforschungsprojektes DENDROM. Forstarchiv 78:88–94Google Scholar
  45. Nusser M, Seydel P, Sheridan P, Walz R, Wydra S (2007) Makroökonomische Effekte des Anbaus und der Nutzung von nachwachsenden Rohstoffe, Fachagentur für Nachwachsende Rohstoffe e.V, BMELV. http://www.fnr-server.de/ftp/pdf/literatur/pdf294_Makrooekonomie.pdf
  46. Orlowsky B, Gerstengarbe FW, Werner PC (2008) A resampling scheme for regional climate simulations and its performance compared to a dynamical RCM. Theor Appl Climatol 92(3–4):209–223CrossRefGoogle Scholar
  47. Österle H, Gerstengarbe F-W, Werner PC (2006) Ein neuer meteorologischer Datensatz für Deutschland, 1951–2003. In: Proceedings 7. Deutsche Klimatagung, Klimatrends: Vergangenheit und Zukunft, MünchenGoogle Scholar
  48. Parton WJ, Stewart JWB, Cole CV (1988) Dynamics of C, N, P and S in grassland soils: a model. Biogeochemistry 5:109–131CrossRefGoogle Scholar
  49. Post WM, Kwon KC (2000) Soil carbon sequestration and land-use change: processes and potential. Glob Change Biol 6(3):317–327CrossRefGoogle Scholar
  50. Post WM, Emanuel WR, Zinke PJ, Stangenberger AG (1982) Soil carbon pools and world life zones. Nature 298(5870):156–159CrossRefGoogle Scholar
  51. Post J, Krysanova V, Suckow F, Mirschel W, Rogasik J, Merbach I (2007) Integrated ecohydrological modelling of soil organic matter dynamics for the assessment of environmental change impacts in meso- to macro-scale river basins. Ecol Model 206:93–109CrossRefGoogle Scholar
  52. Rinklebe VJ, Makeschin F (2003) The impact of arable and forest land use on soil and vegetation: a comparison after 27 years. Forstwissenschaftliches Centralblatt 122(2):81–98CrossRefGoogle Scholar
  53. Rock J (2008) Klimaschutz und Kohlenstoff in Holz—Vergleich verschiedener Strategien. Institute of Geo-Ecology, University of Potsdam, Potsdam. http://opus.kobv.de/ubp/volltexte/2008/1753/pdf/rock_diss.pdf
  54. Rödl A (2008) Ökobilanzierung der Holzerzeugung im Kurzumtrieb. Arbeitsbericht des Instituts für Ökonomie der Forst- und Holzwirtschat des vTI, HamburgGoogle Scholar
  55. Rydberg D (2000) Initial sprouting, growth and mortality of European aspen and birch after selective coppicing in central Sweden. For Ecol Manag 130(1–3):27–35CrossRefGoogle Scholar
  56. Schaber J, Badeck F-W (2003) Physiology based phenology models for forest tree species in Germany. Int J Biometeorol 47(7):193–201CrossRefGoogle Scholar
  57. Scharlemann JPW, Laurance WF (2008) How green are biofuels? Science 4:43–44CrossRefGoogle Scholar
  58. Shinozaki K, Yoda K, Hozumi K, Kira T (1964) A quantitative analysis of plant form: the pipe model theory. I. Basic analysis. Jpn J Ecol 14:97–105Google Scholar
  59. Sievänen R, Lindner M, Mäkelä A, Lasch P (2000) Volume growth and survival graphs: a method for evaluating process-based forest growth models. Tree Physiol 20(5/6):357–365Google Scholar
  60. Simon SM (2007) Szenarien nachhaltiger Bioenergiepotenziale bis 2030—Modellierung für Deutschland, Polen, Tschechien und Ungarn. Dissertation. Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt. Technischen Universität München, MünchenGoogle Scholar
  61. Suckow F (1986) Ein Modell zur Berechnung der Bodentemperatur unter Brache und unter Pflanzenbestand. Dissertation. Akademie der Landwirtschaftswissenschaften der DDR, BerlinGoogle Scholar
  62. Suckow F, Lasch P, Badeck FW (2003) Modellgestützte Analyse von Wasserflüssen in Wäldern- Einfluss von Klimaänderungen und Bewirtschaftungsmaßnahmen. In: BMVEL (ed) Bericht über den Workshop Integrierende Auswertung der Daten des Forstlichen Umweltmonitorings (Level I/ II), 24–26 February 2003, Bonn-Röttgen, BMVEL, Bonn, pp 105–119Google Scholar
  63. Wechsung F, Gerstengarbe FW, Lasch P, Lüttger A, (eds) (2009) Die Ertragsfähigkeit ostdeutscher Ackerflächen unter Klimawandel. PIK-Report 112, PIK, PotsdamGoogle Scholar
  64. Wegehenkel M (2006) Crop growth, soil water and nitrogen balance simulation on three experimental field plots using the Opus model: a case study. Ecol Model 190:116–132CrossRefGoogle Scholar
  65. Werner PC, Gerstengarbe F-W (1997) A proposal for the development of climate scenarios. Clim Res 8(3):171–182CrossRefGoogle Scholar
  66. Werner PC, Gerstengarbe FW, Wechsung F (2008) Grosswetterlagen and precipitation trends in the Elbe river catchment. Meteorol Z 17(1):61–66CrossRefGoogle Scholar
  67. Wessolek G, Asseng S (2006) Trade-off between wheat yield and drainage under current and climate change conditions in northeast Germany. Eur J Agron 24(4):333–342Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Petra Lasch
    • 1
  • Chris Kollas
    • 1
  • Joachim Rock
    • 1
    • 2
  • Felicitas Suckow
    • 1
  1. 1.Potsdam Institute for Climate Impact ResearchPotsdamGermany
  2. 2.Johann Heinrich von Thünen Institut, Federal Research Institute for Rural Areas, Forestry and FisheriesInstitute of Forest Ecology and Forest InventoryEberswaldeGermany

Personalised recommendations