Regional Environmental Change

, Volume 9, Issue 2, pp 121–130

Quantifying disturbance effects on vegetation carbon pools in mountain forests based on historical data

  • Urs Gimmi
  • Annett Wolf
  • Matthias Bürgi
  • Marc Scherstjanoi
  • Harald Bugmann
Original Article


Although the terrestrial carbon budget is of key importance for atmospheric CO2 concentrations, little is known on the effects of management and natural disturbances on historical carbon stocks at the regional scale. We reconstruct the dynamics of vegetation carbon stocks and flows in forests across the past 100 years for a valley in the eastern Swiss Prealps using quantitative and qualitative information from forest management plans. The excellent quality of the historical information makes it possible to link dynamics in growing stocks with high-resolution time series for natural and anthropogenic disturbances. The results of the historical reconstruction are compared with modelled potential natural vegetation. Forest carbon stock at the beginning of the twentieth century was substantially reduced compared to natural conditions as a result of large scale clearcutting lasting until the late nineteenth century. Recovery of the forests from this unsustainable exploitation and systematic forest management were the main drivers of a strong carbon accumulation during almost the entire twentieth century. In the 1990s two major storm events and subsequent bark beetle infestations significantly reduced stocks back to the levels of the mid-twentieth century. The future potential for further carbon accumulation was found to be strongly limited, as the potential for further forest expansion in this valley is low and forest properties seem to approach equilibrium with the natural disturbance regime. We conclude that consistent long-term observations of carbon stocks and their changes provide rich information on the historical range of variability of forest ecosystems. Such historical information improves our ability to assess future changes in carbon stocks. Further, the information is vital for better parameterization and initialization of dynamic regional scale vegetation models and it provides important background for appropriate management decisions.


Forest carbon stock Terrestrial carbon sinks Windthrow Bark beetle Forest management Historical ecology 


  1. Apps JM, Price DT (eds) (1996) Forest ecosystems, forest management and the global carbon cycle. NATO ASI series. Series I, global environmental change, vol 40. Springer, New YorkGoogle Scholar
  2. Asner GP, Archer S, Hughes RF, Ansley RJ, Wessman CA (2003) Net changes in regional woody vegetation cover and carbon storage in Texas Drylands, 1937–1999. Glob Change Biol 9:316–335. doi:10.1046/j.1365-2486.2003.00594.x CrossRefGoogle Scholar
  3. Badeck F-W, Lischke H, Bugmann H, Hickler T, Hönniger K, Lasch P, Lexer MJ, Mouillot F, Schaber J, Smith B (2001) Tree species composition in European pristine forests: comparison of stand data to model predictions. Clim Change 51:307–347. doi:10.1023/A:1012577612155 CrossRefGoogle Scholar
  4. Bitterli D (2004) Das Kloster Einsiedeln als Waldbesitzer im 16. und 17. Jahrhundert. Schweiz Z Forstwesen 155:311–316Google Scholar
  5. BFS Bundesamt für Statistik (2001) Arealstatistik der Schweiz 1992/1997. NeuchatelGoogle Scholar
  6. Bürgi M (1999) A case study of forest change in the Swiss lowlands. Landscape Ecol 14:567–575. doi:10.1023/A:1008168209725 CrossRefGoogle Scholar
  7. Caspersen JP, Pacala SW, Jenkins JC, Hurtt GC, Moorcroft PR, Birdsey RA (2000) Contributions of land-use history to carbon accumulation in US forests. Science 290:1148–1151. doi:10.1126/science.290.5494.1148 CrossRefGoogle Scholar
  8. Cramer W, Kicklighter DW, Bondeau A, Moore BIII, Churkina G, Nemry B, Ruimy A, Schloss AL, NPP Participants Potsdam Model Intercomparison (1999) Comparing global models of terrestrial net primary productivity (NPP): overview and key results. Glob Change Biol 5(Suppl1):1–15. doi:10.1046/j.1365-2486.1999.00009.x Google Scholar
  9. Erb K-J (2004) Land-use related changes in aboveground carbon stocks of Austria’s terrestrial ecosystems. Ecosystems 7:563–572. doi:10.1007/s10021-004-0234-4 (NY, Print)CrossRefGoogle Scholar
  10. Fang JY, Oikawa T, Kato T, Mo W, Wang Z (2005) Biomass carbon accumulation by Japan’s forests from 1947 to 1995. Global Biogeochem Cycles 19:GB2004. doi:10.1029/2004GB002253 CrossRefGoogle Scholar
  11. Frehner M, Wasser B, Schwitter R (2005) Nachhaltigkeit und Erfolgskontrolle im Schutzwald Wegleitung für Pflegemassnahmen in Wäldern mit Schutzfunktion. Bundesamt für Umwelt BAFU, BernGoogle Scholar
  12. Friedlingstein P, Cox P, Betts R, Bopp L, Von Bloh W, Brovkin V, Cadule P, Doney S, Eby M, Fung I, Bala G, John J, Jones C, Joos F, Kato T, Kawamiya M, Knorr W, Lindsay K, Matthews HD, Raddatz T, Rayner P, Reick C, Roeckner E, Schnitzler KG, Schnur R, Strassmann K, Weaver AJ, Yoshikawa C, Zeng N (2006) Climate-carbon cycle feedback analysis: results from the (CIMP)-M-4 model intercomparison. J Clim 19:3337–3353. doi:10.1175/JCLI3800.1 CrossRefGoogle Scholar
  13. Fuhrer J, Beniston M, Fischlin A, Frei C, Goyette S, Jasper K, Pfister C (2006) Climate risks and their impact on agriculture and forests in Switzerland. Clim Change 79:79–102. doi:10.1007/s10584-006-9106-6 CrossRefGoogle Scholar
  14. Gimmi U, Bürgi M (2007) Using oral history and forest management plans to reconstruct traditional non-timber forest uses in the Swiss Rhone valley (Valais). Environ Hist 13:211–246. doi:10.3197/096734007780473492 CrossRefGoogle Scholar
  15. Gimmi U, Bürgi M, Stuber M (2008) Reconstructing anthropogenic disturbance regimes in forest ecosystems: a case study from the Swiss Rhone valley. Ecosystems 11:113–124. doi:10.1007/s10021-007-9111-2 (NY, Print)CrossRefGoogle Scholar
  16. Gingrich S, Erb K-J, Krausmann F, Gaube V, Haberl H (2007) Long-term dynamics of terrestrial carbon stocks in Austria: a comprehensive assessment of the time period from 1830 to 2000. Reg Environ Change 7:37–47. doi:10.1007/s10113-007-0024-6 CrossRefGoogle Scholar
  17. Goodale CL, Apps MJ, Birdsey RS, Field CB, Heath LS, Houghton RA, Jenkins JC, Kohlmaier GH, Kurz W, Liu S, Nabuurs G-J, Nilsson S, Shvidenko AZ (2002) Forest carbon sinks in the northern hemisphere. Ecol Appl 12:891–899. doi:10.1890/1051-0761(2002)012[0891:FCSITN]2.0.CO;2 CrossRefGoogle Scholar
  18. Hickler T, Smith B, Sykes MT, Davis MB, Sugita S, Walker K (2004) Using a generalized vegetation model to simulate vegetation dynamics in northeastern USA. Ecology 85:519–530. doi:10.1890/02-0344 CrossRefGoogle Scholar
  19. Houghton RA, Hackler JL, Lawrence KT (1999) The US carbon budget: contributions from land-use change. Science 285:547–578. doi:10.1126/science.285.5427.574 CrossRefGoogle Scholar
  20. Houghton RA, Hackler JL (2000) Changes in terrestrial carbon storage in the United States. 1. The roles of agriculture and forestry. Glob Ecol Biogeogr 9:125–144. doi:10.1046/j.1365-2699.2000.00166.x CrossRefGoogle Scholar
  21. Houghton RA, Hackler JL, Lawrence KT (2000) Changes in terrestrial carbon storage in the United States. 2. The role of fire and fire management. Glob Ecol Biogeogr 9:145–170. doi:10.1046/j.1365-2699.2000.00164.x CrossRefGoogle Scholar
  22. Houghton RA, Hackler JL (2003) Sources and sinks of carbon from land-use changes in China. Global Biogeochem Cycles 17:1034. doi:10.1029/2002GB001970 CrossRefGoogle Scholar
  23. Kauppi PE, Mielikainen K, Kuusela K (1992) Biomass and carbon budget of European forests, 1971 to 1990. Science 256:70–74. doi:10.1126/science.256.5053.70 CrossRefGoogle Scholar
  24. Koca D, Smith B, Sykes MT (2006) Modelling regional climate change effects on potential natural ecosystems in Sweden. Clim Change 78:381–406. doi:10.1007/s10584-005-9030-1 CrossRefGoogle Scholar
  25. Luyssaert S, Inglima I, Jung M, Richardson AD, Reichsteins M, Papale D, Piao SL, Schulzes ED, Wingate L, Matteucci G, Aragao L, Aubinet M, Beers C, Bernhoffer C, Black KG, Bonal D, Bonnefond JM, Chambers J, Ciais P, Cook B, Davis KJ, Dolman AJ, Gielen B, Goulden M, Grace J, Granier A, Grelle A, Griffis T, Grunwald T, Guidolotti G, Hanson PJ, Harding R, Hollinger DY, Hutyra LR, Kolar P, Kruijt B, Kutsch W, Lagergren F, Laurila T, Law BE, Le Maire G, Lindroth A, Loustau D, Malhi Y, Mateus J, Migliavacca M, Misson L, Montagnani L, Moncrieff J, Moors E, Munger JW, Nikinmaa E, Ollinger SV, Pita G, Rebmann C, Roupsard O, Saigusa N, Sanz MJ, Seufert G, Sierra C, Smith ML, Tang J, Valentini R, Vesala T, Janssens IA (2007) CO2 balance of boreal, temperate, and tropical forests from a global database. Glob Change Biol 13:2509–2537. doi:10.1111/j.1365-2486.2007.01439.x CrossRefGoogle Scholar
  26. Magniani F, Mencuccini M, Borghetti M, Berbigier P, Berninger F, Delzon S, Grelle A, Hari P, Jarvis PG, Kolari P, Kowalski AS, Lankreijer H, Law BE, Lindroth A, Loustau D, Manca G, Moncrieff JB, Rayment M, Tedeschi V, Valentini R, Grace J (2007) The human footprint in the carbon cycle of temperate and boreal forests. Nature 447:848–850Google Scholar
  27. Mitchell TD, Carter TR, Jones PD, Hulme M, New M (2004) A comprehensive set of high-resolution grids of monthly climate for Europe and the globe: the observed record (1901–2000) and 16 scenarios (2001–2100). July 2004. Working Paper 55. Tyndall Centre for Climate Change Research. University of East Anglia, NorwichGoogle Scholar
  28. Morales P, Sykes MT, Prentice CI, Smith P, Smith B, Bugmann H, Zierl B, Friedlingstein P, Viovy N, Sabate S, Sanchez A, Pla E, Gracia C, Sitch S, Arneth A, Ogee J (2005) Comparing and evaluating process-based ecosystem model predictions of carbon and water fluxes in major European forest biomes. Glob Change Biol 11:1–23. doi:10.1111/j.1365-2486.2005.01036.x CrossRefGoogle Scholar
  29. Morales P, Hickler T, Rowell DP, Smith B, Sykes MT (2007) Changes in European ecosystem productivity and carbon balance driven by regional climate model output. Glob Change Biol 13:108–122. doi:10.1111/j.1365-2486.2006.01289.x CrossRefGoogle Scholar
  30. Myneni RB, Dong J, Tucker CJ, Kaufmann K, Kauppi PE, Liski J, Zhou L, Alexeyev V, Hughes MK (2001) A large carbon sink in the woody biomass of Northern forests. Proc Natl Acad Sci USA 98:14784–14789. doi:10.1073/pnas.261555198 CrossRefGoogle Scholar
  31. Naabuurs G-J, Schelhaas M-J, Mohren GMJ, Field CG (2003) Temporal evolution of the European forest sector carbon sink from 1950 to 1999. Glob Change Biol 9:152–160. doi:10.1046/j.1365-2486.2003.00570.x CrossRefGoogle Scholar
  32. Nilsson C, Stjernquist I, Bärring L, Schlyter P, Jönsson AM, Samuelsson H (2004) Recorded storm damage in Swedish forests 1901–2000. For Ecol Manage 199:165–173Google Scholar
  33. Olson JS, Watts JA, Allison LJ (1983) Carbon in live vegetation of major world ecosystems. Oak Ridge National Laboratory, Oak RidgeGoogle Scholar
  34. Penman J, Gytarsky M, Hiraishi T, Krug T, Kruger D, Pipatti R, Buendia L, Miwa K, Ngara T, Tanabe K, Wagner F (2003) Good practice guidance for land use, land use change and forestry. IGES_IPCC, HyamaGoogle Scholar
  35. Perruchoud DO, Fischlin A (1995) The response of the carbon cycle in undisturbed forest ecosystems to climate change: a review of plant-soil models. J Biogeogr 22:759–774. doi:10.2307/2845978 CrossRefGoogle Scholar
  36. Schütz J-P, Goetz M, Schmid W, Mandallaz D (2006) Vulnerability of spruce (Picea abies) and beech (Fagus sylvatica) forest stands to storm and consequences for silviculture. Eur J For Res 125:291–302. doi:10.1007/s10342-006-0111-0 Google Scholar
  37. Sitch S, Smith B, Prentice IC, Arneth A, Bondeau A, Cramer W, Kaplan JO, Levis S, Lucht W, Sykes MT, Thonicke K, Venevsky S (2003) Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Glob Change Biol 9:161–185. doi:10.1046/j.1365-2486.2003.00569.x CrossRefGoogle Scholar
  38. Smith B, Prentice IC, Sykes MT (2001) Representation of vegetation dynamics in the modelling of terrestrial ecosystems: comparing two contrasting approaches within European climate space. Glob Ecol Biogeogr 10:621–637CrossRefGoogle Scholar
  39. Thürig E, Schmid S (2008) Jährliche CO2-Flüsse im Wald: Berechnungsmethode für das Treibhausgasinventar. Schweiz Z Forstwesen 159:31–38CrossRefGoogle Scholar
  40. Waring RH, Schlesinger WH (1985) Forest ecosystems: concepts and management. Academic Press, OrlandoGoogle Scholar
  41. Woodbury PB, Heath LS, Smith JE (2006) Land use change effects on forest carbon cycling throughout the southern United States. J Environ Qual 35:1348–1363. doi:10.2134/jeq2005.0148 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Urs Gimmi
    • 1
    • 3
  • Annett Wolf
    • 1
  • Matthias Bürgi
    • 2
  • Marc Scherstjanoi
    • 1
  • Harald Bugmann
    • 1
  1. 1.Forest Ecology, Department of Environmental Sciences, Institute of Terrestrial EcosystemsSwiss Federal Institute of TechnologyZurichSwitzerland
  2. 2.Research Group Land-Use History, Research Unit Land-Use DynamicsSwiss Federal Research Institute WSLBirmensdorfSwitzerland
  3. 3.Department of Forest and Wildlife EcologyUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations