Resilience of stocking capacity to changing climate in arid to Mediterranean landscapes

  • Martin Köchy
  • Martin Mathaj
  • Florian Jeltsch
  • Dan Malkinson
Original Article

Abstract

Small livestock is an important resource for rural human populations in dry climates. How strongly will climate change affect the capacity of the rangeland? We used hierarchical modelling to scale quantitatively the growth of shrubs and annual plants, the main food of sheep and goats, to the landscape extent in the eastern Mediterranean region. Without grazing, productivity increased in a sigmoid way with mean annual precipitation. Grazing reduced productivity more strongly the drier the landscape. At a point just under the stocking capacity of the vegetation, productivity declined precipitously with more intense grazing due to a lack of seed production of annuals. We repeated simulations with precipitation patterns projected by two contrasting IPCC scenarios. Compared to results based on historic patterns, productivity and stocking capacity did not differ in most cases. Thus, grazing intensity remains the stronger impact on landscape productivity in this dry region even in the future.

Keywords

Topography Spatially explicit model Climate change Middle East Stocking capacity 

Notes

Acknowledgments

We thank Malin Hansen, the members of the Potsdam University working group “Plant Ecology and Nature Conservation”, and three anonymous reviewers for critical comments on the manuscript. This study is part of the GLOWA Jordan River project financed by the German Federal Ministry for Education and Research (BMBF), contract 01LW0306(A). The authors alone are responsible for the content of this publication.

Supplementary material

10113_2008_48_MOESM1_ESM.txt (11 kb)
Electronic Supplement 1 (TXT 12 kb)
10113_2008_48_MOESM2_ESM.txt (0 kb)
Electronic Supplement 2 (TXT 1 kb)
10113_2008_48_MOESM3_ESM.doc (133 kb)
Electronic Supplement 3 (DOC 133 kb)

References

  1. Asner GP, Elmore AJ, Olander LP, Martin RE, Harris AT (2004) Grazing systems, ecosystem responses, and global change. Ann Rev Environ Resour 29:261–299CrossRefGoogle Scholar
  2. Bailey AW, Irving BD, Fitzgerald RD (1990) Regeneration of woody species following burning and grazing in aspen parkland. J Range Manage 43:212–215CrossRefGoogle Scholar
  3. Bartolomé J, Franch J, Plaixats J, Seligman NG (1998) Diet selection by sheep and goats on Mediterranean heath-woodland range. J Range Manage 51:383–391CrossRefGoogle Scholar
  4. Ben-Gai T, Bitan A, Manes A, Alpert P, Rubin S (1998) Spatial and temporal changes in rainfall frequency distribution patterns in Israel. Theor Appl Climatol 61:177–190CrossRefGoogle Scholar
  5. Carmel Y, Kadmon R (1999) Effects of grazing and topography on long-term vegetation changes in Mediterranean ecosystem in Israel. Plant Ecol 145:243CrossRefGoogle Scholar
  6. Christensen L, Coughenour MB, Ellis JE, Chen ZZ (2004) Vulnerability of the Asian typical steppe to grazing and climate change. Clim Change 63:351–368CrossRefGoogle Scholar
  7. Danin A (1992) Flora and vegetation of Israel and adjacent areas. Bocconea 3:18–42Google Scholar
  8. Degen AA, Benjamin RW, Abdraimov SA, Sarbasov TI (2002) Browse selection by Karakul sheep in relation to plant composition and estimated metabolizable energy content. J Agric Sci 139:353–358CrossRefGoogle Scholar
  9. Drewa PB, Havstad KM (2001) Effects of fire, grazing, and the presence of shrubs on Chihuahuan desert grasslands. J Arid Environ 48:429–443CrossRefGoogle Scholar
  10. Dukes JS, Chiariello NR, Cleland EE, Moore LA, Shaw MR, Thayer S, Tobeck T, Mooney HA, Field C (2005) Responses of grassland production to single and multiple global environmental changes. PLoS Biol 3:e319CrossRefGoogle Scholar
  11. Easterling DR, Karl TR, Gallo KP, Robinson DA, Trenberth KE, Dai A (2000) Observed climate variability and change of relevance to the biosphere. J Geophys Res Atmos 105:20101–20114CrossRefGoogle Scholar
  12. Étienne M (2005) Management of grazing animals for environmental quality. In: Molina Alcaide E, Ben Salem H, Biala K, Morand-Fehr P (eds) Sustainable grazing, nutritional utilization and quality of sheep and goat products (Pâturage durable, utilization nutritionnelle et qualité des produits des ovins et des caprins, Options Méditerranéennes - Série A. Séminaires Méditerranéens 67). CIHEAM-IAMZ, Zaragoza, pp 225–235Google Scholar
  13. FAO (2003) Compendium of agricultural–environmental indicators. 1989–91 to 2000. Food and Agriculture Organization of the United Nations, Statistical Analysis Service, Statistics Division, RomeGoogle Scholar
  14. Fernandez-Gimenez ME, Le Febre S (2006) Mobility in pastoral systems: dynamic flux or downward trend? Int J Sust Dev World Ecol 13:341–362Google Scholar
  15. Fuhlendorf SD, Briske DD, Smeins FE (2001) Herbaceous vegetation change in variable rangeland environments: the relative contribution of grazing and climatic variability. Appl Veg Sci 4:177–188Google Scholar
  16. Giorgi F, Bi X, Pal J (2004a) Mean, interannual variability and trends in a regional climate change experiment over Europe. II: Climate change scenarios (2071–2100). Clim Dyn 23:839–858CrossRefGoogle Scholar
  17. Giorgi F, Bi X, Pal JS (2004b) Mean, interannual variability and trends in a regional climate change experiment over Europe. I. Present-day climate (1961–1990). Clim Dyn 22:733–756CrossRefGoogle Scholar
  18. Greene RSB, Kinnell PIA, Wood JT (1994) Role of plant cover and stock trampling on runoff and soil erosion from semi-arid wooded rangelands. Aust J Soil Res 32:953–973CrossRefGoogle Scholar
  19. Grimm V, Berger U, Bastiansen F, Eliassen S, Ginot V, Giske J, Goss-Custard J, Grand T, Heinz SK, Huse G, Huth A, Jepsen JU, Jørgensen C, Mooij WM, Müller B, Pe’er G, Piou C, Railsback SF, Robbins AM, Robbins MM, Rossmanith E, Rüger N, Strand E, Souissi S, Stillman RA, Vabø R, Visser U, DeAngelis DL (2006) A standard protocol for describing individual-based and agent-based models. Ecol Model 198:115–126CrossRefGoogle Scholar
  20. Haberl H, Erb KH, Krausmann F, Gaube V, Bondeau A, Plutzar C, Gingrich S, Lucht W, Fischer-Kowalski M (2007) Quantifying and mapping the human appropriation of net primary production in earth’s terrestrial ecosystems. Proc Natl Acad Sci USA 104:12942–12947CrossRefGoogle Scholar
  21. Heisler JL, Briggs JM, Knapp AK, Blair JM, Seerey A (2004) Direct and indirect effects of fire on shrub density and aboveground productivity in a mesic grassland. Ecology 85:2245–2257CrossRefGoogle Scholar
  22. Henkin Z, Seligman NG, Noy-Meir I, Kafkafi U, Gutman M (1998) Rehabilitation of Mediterranean dwarf-shrub rangeland with herbicides, fertilizers, and fire. J Range Manage 51:193–199CrossRefGoogle Scholar
  23. Hibbard KA, Schimel DS, Archer S, Ojima DS, Parton W (2003) Grassland to woodland transitions: integrating changes in landscape structure and biogeochemistry. Ecol Appl 13:911–926CrossRefGoogle Scholar
  24. Holzapfel C, Tielbörger K, Parag HA, Kigel J, Sternberg M (2006) Annual plant–shrub interactions along an aridity gradient. Basic Appl Ecol 7:268–279CrossRefGoogle Scholar
  25. ICARDA, IFPRI (2008) The Mashreq/Maghreb project. Background. http://www.icarda.org/mmproject/Background.htm. Accessed 20 Feb 2008
  26. IPCC (Intergovernmental Panel on Climate Change) (2000) Emission scenarios. Summary for policymakers. A special report of the IPCC Working Group III, IPCC, Geneva, SwitzerlandGoogle Scholar
  27. Jeltsch F, Moloney K, Schurr F, Köchy M, Schwager M (2008) The state of plant population modelling in light of environmental change. Perspect Plant Ecol Evol Syst 9:171–189CrossRefGoogle Scholar
  28. Jeltsch F, Milton SJ, Dean WRJ, van Rooyen N (1997) Analysing shrub encroachment in the southern Kalahari: a grid-based modelling approach. J Appl Ecol 34:1497–1508CrossRefGoogle Scholar
  29. Jones RG, Murphy JM, Hassell D, Taylor R (2001) Ensemble mean changes in a simulation of the European mean climate of 2071–2100 using the new Hadley Centre regional modeling system HadAM3H/HadRM3H. Hadley Centre Report, Hadley Centre, Exeter, UKGoogle Scholar
  30. Kadmon R (1995) Plant competition along soil moisture gradients: a field experiment with the desert annual Stipa capensis. J Ecol 83:253–262CrossRefGoogle Scholar
  31. Kaplan Y (1984) The ecosystem of the Yahudia Nature Reserve with emphasis on dynamics of germination and development of Quercus ithaburensis Decne. Dissertation, University of Wageningen, Wageningen, The NetherlandsGoogle Scholar
  32. Karl TR, Trenberth KE (2003) Modern global climate change. Science 302:1719–1723CrossRefGoogle Scholar
  33. Koch J, Schaldach R (2006) Adapting a land use change model to the Jordan River region. In: Ünal Y, Kahya C, Demirhan Barı D (eds) Proceedings of the international conference on climate change and the middle east: past, present and future, Istanbul. Turkish State Meteorological Service (DMI), Ankara (Turkey), pp 358–364Google Scholar
  34. Köchy M (2006) Opposite trends in life stages of annual plants caused by daily rainfall variability—interaction with climate change. In: Ünal Y, Kahya C, Demirhan Barı D (eds) Proceedings of the international conference on climate change and the middle east: past, present and future, Istanbul. Turkish State Meteorological Service (DMI), Ankara, pp 347–357Google Scholar
  35. Köchy M (2007) Grazing capacity of Middle East landscapes under contrasting climate change scenarios. 37. Jahrestagung der Gesellschaft für Ökologie. 10–14 August 2007, Marburg (Germany). Verh Ges Ökol 37:137Google Scholar
  36. Köchy M, Wilson SD (2005) Variation in nitrogen deposition and available soil nitrogen in a forest–grassland ecotone in Canada. Landsc Ecol 20:191–202CrossRefGoogle Scholar
  37. Koechy M (2008) Effects of simulated daily precipitation patterns on annual plant populations depend on life stage and climatic region. BMC Ecol 8:4. doi:10.1186/1472-6785-8-4
  38. Kutiel P (1992) Slope aspect effect on soil and vegetation in a Mediterranean ecosystem. Isr J Bot 41:243–250Google Scholar
  39. Lavorel S, Canadell J, Rambal S, Terrades J (1998) Mediterranean terrestrial ecosystems: research priorities on global change effects. Glob Ecol Biogeogr Lett 7:157–166Google Scholar
  40. Le Houérou HN (1982) The impact of climate on pastoralism. In: Kates RW, Ausubel RN, Berberian M (eds) The impact of climate on pastoralism. Wiley, New York, pp 155–185Google Scholar
  41. Leclerc B, Joffre R, Joffre L-M (1986) Utilisation du maquis corse par des caprins et des ovins. III.—Exploitation de l’espace alimentaire par des caprins. Acta Œcol-Œcol Appl 7:123–149Google Scholar
  42. Leij FJ, Romano N, Palladino M, Schaap MG, Coppola A (2004) Topographical attributes to predict soil hydraulic properties along a hillslope transect. Water Resour Res 40:W02407CrossRefGoogle Scholar
  43. Madany MH, West NE (1983) Livestock grazing-fire regime interactions within montane forests of Zion National Park, Utah. Ecology 64:661–667CrossRefGoogle Scholar
  44. Malkinson D, Jeltsch F (2007) Intraspecific facilitation: a missing process along increasing stress gradients—insights from simulated shrub populations. Ecography 30:339–348Google Scholar
  45. Mathaj M (2007) Modellierung von Vegetation und Erosion entlang eines Klimagradienten von mediterran bis semiarid, Diplomarbeit (MSc thesis), Universität Potsdam, PotsdamGoogle Scholar
  46. Mellado M, Valdez R, Lara LM, Lopez R (2003) Stocking rate effects on goats: a research observation. J Range Manage 56:167–173CrossRefGoogle Scholar
  47. Milchunas DG (2006) Responses of plant communities to grazing in the southwestern United States. General Technical Report RMPRS-GTR 169, United States Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fort Collins, Colorado, USAGoogle Scholar
  48. Milchunas DG, Forwood JR, Lauenroth WK (1994) Forage production across fifty years of grazing intensity treatments in shortgrass steppe. J Range Manage 47:133–139CrossRefGoogle Scholar
  49. Mouillot F, Rambal S, Joffre R (2002) Simulating climate change impacts on fire frequency and vegetation dynamics in a Mediterranean-type ecosystem. Glob Change Biol 8:423–437CrossRefGoogle Scholar
  50. Ngaido T, Shomo F, Arab G (2001) Institutional change in the Syrian rangelands. Inst Dev Stud Bull 32:64Google Scholar
  51. Oesterheld M, DiBella CM, Kerdiles H (1998) Relation between NOAA-AVHRR satellite data and stocking rate of rangelands. Ecol Appl 8:207–212CrossRefGoogle Scholar
  52. Osem Y, Perevolotsky A, Kigel J (2002) Grazing effect on diversity of annual plant communities in a semi-arid rangeland; interactions with small-scale spatial and temporal variation in primary productivity. J Ecol 90:936–946CrossRefGoogle Scholar
  53. Osman AE, Cocks PS, Russi L, Pagnotta MA (1991) Response of Mediterranean grassland to phosphate and stocking rates—biomass production and botanical composition. J Agric Sci 116:37–46CrossRefGoogle Scholar
  54. Papachristou T (1994) Foraging behaviour and nutrition of goats grazing on shrublands of Greece. In: Gordon IJ, Rubino R (eds) Grazing behaviour of goats and sheep (Comportement au pâturage des chèvres et des brebis, Cahiers Option Méditerranéennes 5). CIHEAM-IAMZ, Zaragoza, pp 83–90Google Scholar
  55. Pardini A, Longhi F, Orlandini S, Dalla Marta A (2003) Integration of pastoral communities in the global economy. Regional studies association international conference: reinventing regions in a global economy, 12–15 April 2003, Pisa. http://www.regional-studies-assoc.ac.uk/events/pisa03/pardinietal.pdf. Accessed 5 Dec 2005
  56. Parker AJ, Branner JC (1982) The topographic relative moisture index: an approach to soil moisture assessment in mountain terrain. Phys Geogr 3:160–168Google Scholar
  57. Parton WJ, Scurlock JMO, Ojima DS, Schimel DS, Hall DO, Scopegram Group members (1995) Impact of climate change on grassland production and soil carbon worldwide. Glob Change Biol 1:13–22CrossRefGoogle Scholar
  58. Perevolotsky A, Landau S, Kababia D, Ungar ED (1998) Diet selection in dairy goats grazing woody Mediterranean rangeland. Appl Anim Behav Sci 57:117–131CrossRefGoogle Scholar
  59. Perevolotsky A, Ne'eman G, Yonatan R, Henkin Z (2001) Resilience of prickly burnet to management in east Mediterranean rangelands. J Range Manage 54:561–566CrossRefGoogle Scholar
  60. Perry CA, Hsu KJ (2000) Geophysical, archaeological, and historical evidence support a solar-output model for climate change. Proc Natl Acad Sci USA 97:12433–12438CrossRefGoogle Scholar
  61. Pickup (1996) Estimating the effects of land degradation and rainfall variation on productivity in rangelands: an approach using remote sensing and models of grazing and herbage dynamics. J Appl Ecol 33:819–832CrossRefGoogle Scholar
  62. Plieninger T (2007) Compatibility of livestock grazing with stand regeneration in Mediterranean holm oak parklands. J Nat Conserv 15:1–9CrossRefGoogle Scholar
  63. Puigdefábregas J (2005) The role of vegetation patterns in structuring runoff and sediment fluxes in drylands. Earth Surf Process Landf 30:133–147CrossRefGoogle Scholar
  64. Reisman-Berman O, Kadmon R, Shachak M (2006) Spatio-temporal scales of dispersal limitation in the recolonization of a semi-arid Mediterranean old-field. Ecography 29:418–426CrossRefGoogle Scholar
  65. Richardson FD, Hahn BD, Hoffman MT (2007) Modelling the sustainability and productivity of pastoral systems in the communal areas of Namaqualand. J Arid Environ 70:701–717CrossRefGoogle Scholar
  66. Rowe AG (1999) The exploitation of an arid landscape by a pastoral society: the contemporary eastern Badia of Jordan. Appl Geogr 19:345–361CrossRefGoogle Scholar
  67. Saupe D (1988) Algorithms for random fractals. In: Peitgen H, Saupe D (eds) The science of fractal images. Springer, New York, pp 71–136Google Scholar
  68. Schwinning S, Ehleringer JR (2001) Water use trade-offs and optimal adaptations to pulse-driven arid ecosystems. J Ecol 89:464–480CrossRefGoogle Scholar
  69. Snyder KA, Tartowski SL (2006) Multi-scale temporal variation in water availability: implications for vegetation dynamics in arid and semi-arid ecosystems. J Arid Environ 65:219–234CrossRefGoogle Scholar
  70. Sternberg M, Gutman M, Perevolotsky A, Ungar ED, Kigel J (2000) Vegetation response to grazing management in a Mediterranean herbaceous community: a functional group approach. J Appl Ecol 37:224–237CrossRefGoogle Scholar
  71. Sternberg M, Shoshany M (2001a) Aboveground biomass allocation and water content relationships in Mediterranean trees and shrubs in two climatological regions in Israel. Plant Ecol 157:171–179CrossRefGoogle Scholar
  72. Sternberg M, Shoshany M (2001b) Influence of slope aspect on Mediterranean woody formations: comparison of a semiarid and an arid site in Israel. Ecol Res 16:335–345CrossRefGoogle Scholar
  73. Tadmor NH, Eyal E, Benjamin RW (1974) Plant and sheep production on semiarid annual grassland in Israel. J Range Manage 27:427–432CrossRefGoogle Scholar
  74. Tietjen B, Jeltsch F (2007) Semi-arid grazing systems and climate change—a survey of present modelling potential and future needs. J Appl Ecol 44:425–434CrossRefGoogle Scholar
  75. van de Koppel J, Rietkerk M (2000) Herbivore regulation and irreversible vegetation change in semi-arid grazing systems. Oikos 90:253–260CrossRefGoogle Scholar
  76. van de Koppel J, Rietkerk M, van Langevelde F, Kumar L, Klausmeier CA, Fryxell JM, Hearne J (2002) Spatial heterogeneity and irreversible vegetation change in semi-arid grazing systems. Am Nat 159:209–218CrossRefGoogle Scholar
  77. Warren SD, Thurow TL, Blackburn WH, Garza NE (1986) The influence of livestock trampling under intensive rotation grazing on soil hydrologic characteristics. J Range Manage 39:491–495CrossRefGoogle Scholar
  78. Williams CA, Albertson JD (2006) Dynamical effects of the statistical structure of annual rainfall on dryland vegetation. Glob Change Biol 12:777–792CrossRefGoogle Scholar
  79. Zarovali MP, Yiakoulaki MD, Papanastasis VP (2007) Effects of shrub encroachment on herbage production and nutritive value in semi-arid Mediterranean grasslands. Grass Forage Sci 62:355–363CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Martin Köchy
    • 1
  • Martin Mathaj
    • 1
  • Florian Jeltsch
    • 1
  • Dan Malkinson
    • 2
  1. 1.Institut für Biologie und BiochemieUniversität PotsdamPotsdamGermany
  2. 2.Department of Geography and Environmental StudiesUniversity of HaifaHaifaIsrael

Personalised recommendations