Regional Environmental Change

, Volume 7, Issue 1, pp 37–47 | Cite as

Long-term dynamics of terrestrial carbon stocks in Austria: a comprehensive assessment of the time period from 1830 to 2000

  • Simone Gingrich
  • Karl-Heinz Erb
  • Fridolin Krausmann
  • Veronika Gaube
  • Helmut Haberl
Original Article


This article presents a comprehensive data set on Austria’s terrestrial carbon stocks from the beginnings of industrialization in the year 1830 to the present. It is based on extensive historical and recent land use and forestry data derived from primary sources (cadastral surveys) for the early nineteenth century, official statistics available for later parts of the nineteenth century as well as the twentieth century, and forest inventory data covering the second half of the twentieth century. Total carbon stocks—i.e. aboveground and belowground standing crop and soil organic carbon—are calculated for the entire period and compared to those of potential vegetation. Results suggest that carbon stocks were roughly constant from 1830 to 1880 and have grown considerably from 1880 to 2000, implying that Austria’s vegetation has acted as a carbon sink since the late nineteenth century. Carbon stocks increased by 20% from approximately 1.0 GtC in 1830 and 1880 to approximately 1.2 GtC in the year 2000, a value still much lower than the amount of carbon terrestrial ecosystems are expected to contain in the absence of land use: According to calculations presented in this article, potential vegetation would contain some 2.0 GtC or 162% of the present terrestrial carbon stock, suggesting that the recent carbon sink results from a recovery of biota from intensive use in the past. These findings are in line with the forest transition hypothesis which claims that forest areas are growing in industrialized countries. Growth in forest area and rising carbon stocks per unit area of forests both contribute to the carbon sink. We discuss the hypothesis that the carbon sink is mainly caused by the shift from area-dependent energy sources (biomass) in agrarian societies to the largely area-independent energy system of industrial societies based above all on fossil fuels.


Carbon stock Terrestrial carbon sink Forest transition Environmental history 



This study is based on research conducted in the project “Carbon household and socio-economic change” funded by the Austrian Academy of Science. It contributes to the Global Land Project ( and to ALTER-Net, “A Long-Term Biodiversity, Ecosystem and Awareness Research Network” ( launched within the EU’s 6th Framework Programme. The authors want to thank Prof. Hubert Sterba for his support and two anonymous reviewers for their helpful comments.


  1. Bugmann H, Pfister C (2000) Impacts of interannual climate variability on past and future forest composition. Reg Environ Change 1(3):112–125CrossRefGoogle Scholar
  2. Caspersen JP, Pacala SW, Jenkins JC, Hurtt GC, Moorcroft PR, Birdsey RA (2000) Contributions of land-use history to carbon accumulation in US. For Sci 290:1148–1151CrossRefGoogle Scholar
  3. Dersch G, Böhm K (2001) Effects of agronomic practices on the soil carbon storage potential in arable farming in Austria. Nutr Cycl Agroecosyst 60:49–55CrossRefGoogle Scholar
  4. Dixon RK, Brown S, Houghton RA, Solomon AH, Trexler MC, Wisniewski J (1994) Carbon pools and flux of global forest ecosystems. Science 263:185–190CrossRefGoogle Scholar
  5. Ellenberg H (1996) Vegetation Mitteleuropas mit den Alpen. In ökologischer, dynamischer und historischer Sicht. Ulmer, StuttgartGoogle Scholar
  6. Erb K-H (2004a) Land-use related changes in aboveground carbon stocks of Austria’s terrestrial ecosystems. Ecosystems 7(5):563–572CrossRefGoogle Scholar
  7. Erb K-H (2004b) Actual land demand of Austria 1926–2000: a variation on ecological footprint assessments. Land Use Policy 21(3):247–259CrossRefGoogle Scholar
  8. Erb K-H, Haberl H, Krausmann F (2007) The fossil-fuel powered carbon sink. Carbon flows and Austria’s energetic metabolism in a long-term perspective. In: Fischer-Kowalski M, Haberl H (eds) Socioecological transitions and global change. Comparing historical and current changes in societal metabolism and land use. Edward Elgar, Cheltenham, Northampton (in print)Google Scholar
  9. Fischer-Kowalski M, Haberl H (eds) (2007) Socioecological transitions and global change. Comparing historical and current changes in societal metabolism and land use. Edward Elgar, Cheltenham, Northampton (in print)Google Scholar
  10. Goodale CL, Apps MJ, Birdsey R, Field CB, Heath LS, Hought RA, Jenkins JC, Kohlmaier GH, Kurz W, Liu S, Nabuurs G-J, Nilsson S, Shvidenko AZ (2002) Forest carbon sinks in the northern hemisphere. Ecol Appl 12(3):891–899CrossRefGoogle Scholar
  11. Guo LB, Gifford RM (2002) Soil carbon stocks and land use change: a meta analysis. Glob Change Biol 8(4):345–360CrossRefGoogle Scholar
  12. Haberl H (2001) The energetic metabolism of societies. Part II: Empirical examples. J Ind Ecol 5(2):71–88CrossRefGoogle Scholar
  13. Haberl H, Erb K-H, Krausmann F, Adensam H, Schulz NB (2003) Land-use change and socioeconomic metabolism in Austria. Part II: Land-use scenarios for 2020. Land Use Policy 20(1):21–39CrossRefGoogle Scholar
  14. Haberl H, Winiwarter V, Andersson K, Ayres RU, Boone CG, Castillio A, Cunfer G, Fischer-Kowalski M, Freudenburg WR, Furman E, Kaufmann R, Krausmann F, Langthaler E, Lotze-Campen H, Mirtl M, Redman CA, Reenberg A, Wardell AD, Warr B, Zechmeister H (2006) From LTER to LTSER: conceptualizing the socio-economic dimension of long-term socio-ecological research. Ecol Soc 11(2):13. Google Scholar
  15. Hafner F (1979) Steiermarks Wald in Geschichte und Gegenwart. Eine forstliche Monographie. Österreichischer Agrarverlag, WienGoogle Scholar
  16. Houghton RA (2005) Aboveground forest biomass and the global carbon balance. Glob Change Biol 11(6):945–958CrossRefGoogle Scholar
  17. Houghton RA, Hobbie JE, Melillo JM, Moore B III, Peterson BJ, Shaver GR, Woodwell GM (1983) Changes in the carbon content of terrestrial biota and soils between 1860 and 1980: a net release of CO2 to the atmosphere. Ecol Monogr 53(3):235–262CrossRefGoogle Scholar
  18. Johann E (1968) Geschichte der Waldnutzung in Kärnten unter dem Einfluss der Berg-, Hütten- und Hammerwerke. Verlag des Geschichtsvereines für Kärnten, KlagenfurtGoogle Scholar
  19. Jonas M, Nilsson S (2001) The Austrian carbon database (ACDb). Study—overview. International Institute for Applied Systems Analysis (IIASA), Laxenburg, Report i-130Google Scholar
  20. Kauppi PE, Ausubel JH, Fang J, Mather AS, Sedjo RA, Waggoner PE (2006) Returning forests analyzed with the forest identity. Proc Natl Acad Sci USA 103(46):17574–17579CrossRefGoogle Scholar
  21. Kilian W, Müller F (1995) Die Natürlichen Waldgesellschaften und Wuchsgebiete. In: ÖSTAT, FBVA (eds) Eigenverlag, Wien, pp 25–36Google Scholar
  22. Kilian W, Müller F, Starlinger F (1994) Die forstlichen Wuchsgebiete Österreichs. Eine Naturraumgliederung nach waldökologischen Gesichtspunkten. Forstliche Bundesversuchsanstalt – Eigenverlag, WienGoogle Scholar
  23. Koller E (1970) Forstgeschichte des Salzkammergutes. Eine forstliche Monographie. Österreichischer Agrarverlag, WienGoogle Scholar
  24. Körner Ch, Schilcher B, Pelaez-Riedl S (1993) Vegetation und Treibhausproblematik: Eine Beurteilung der Situation in Österreich unter besonderer Berücksichtigung der Kohlenstoffbilanz. In: Österreichische Akademie der Wissenschaften Kommission für Reinhaltung der Luft (eds) Anthropogene Klimaänderung: mögliche Auswirkungen auf Österreich - mögliche Maßnahmen in Österreich, Bestandsaufnahme und Dokumentation. im Auftrag des BMWuF und des BMUJF. Austrian Academy of Sciences, Wien, pp 6.1–6.46Google Scholar
  25. Krausmann F (2001) Land use and industrial modernization: an empirical analysis of human influence on the functioning of ecosystems in Austria 1830–1995. Land Use Policy 18(1):17–26CrossRefGoogle Scholar
  26. Krausmann F (2006) Die Forest Transition in Österreich: Eine sozialökologische Annäherung. Mitteilungen der Österreichischen Geographischen Gesellschaft 148Google Scholar
  27. Krausmann F, Haberl H (2002) The process of industrialization from the perspective of energetic metabolism. Socioeconomic energy flows in Austria 1830–1995. Ecol Econ 41(2):177–201CrossRefGoogle Scholar
  28. Krausmann F, Haberl H, Schulz NB, Erb K-H, Darge E, Gaube V (2003) Land-use change and socio-economic metabolism in Austria. Part I: driving forces of land-use change: 1950–1995. Land Use Policy 20(1):1–20CrossRefGoogle Scholar
  29. Marschall J (1975) Hilfstafeln für die Forsteinrichtung. Österreichischer Agrarverlag, WienGoogle Scholar
  30. Mather A (1992) The forest transition. Area 24(4):367–379Google Scholar
  31. Mather AS, Needle CL (1998) The forest transition: a theoretical basis. Area 30(2):117–124CrossRefGoogle Scholar
  32. Mather AS, Fairbairn J, Needle CL (1999) The course and drivers of the forest transition: the case of France. J Rural Stud 15(1):65–90CrossRefGoogle Scholar
  33. Moritsch A (1972) Der Franziszeische Grundsteuerkataster Quelle für die Wirtschaftsgeschichte und historische Volkskunde. East Eur Q 3(4):438–448Google Scholar
  34. Murty D, Kirschbaum MUF, McMurtrie RE, Mcgilvray H (2002) Does conversion of forest to agricultural land change soil carbon and nitrogen? A review of the literature. Glob Change Biol 8(2):105–123CrossRefGoogle Scholar
  35. Oberrauch H (1952) Tirols Wald und Waidwerk. Ein Beitrag zur Forst- und Jagdgeschichte. Universitätsverlag Wagner, InnsbruckGoogle Scholar
  36. Olson JS, Watts JA, Allison LJ (1983) Carbon in live vegetation of major world ecosystems. Oak Ridge National Laboratory, Oak RidgeGoogle Scholar
  37. Österreichischer Forstverein (ed) (1983) Österreichs Wald in Vergangenheit und Gegenwart. Österreichischer Agrarverlag, WienGoogle Scholar
  38. Penman J, Gytarsky M, Hiraishi T, Krug T, Kruger D, Pipatti R, Buendia L, Miwa K, Ngara T, Tanabe K, Wagner F (2003) Good practice guidance for land use, land-use change and forestry. IGES-IPCC, HayamaGoogle Scholar
  39. Rudel TK, Coomes OT, Moran E, Achard F, Angelsen A, Xu J, Lambin E (2005) The forest transition: towards a global understanding of land use change. Glob Environ Change 15:23–31CrossRefGoogle Scholar
  40. Sandgruber R (1978) Österreichische Agrarstatistik 1750–1918. Österreichischer Agrarverlag, WienGoogle Scholar
  41. Sandgruber R (1979) Der Franziszeische Kataster und die dazugehörigen Steuerschätzungsoperate als wirtschafts- und sozialhistorische Quellen. Mitt niederösterreichischen Landesarchiv 3:16–28Google Scholar
  42. Schimel D (1995) Terrestrial ecosystems and the carbon cycle. Glob Change Biol 1:77–91CrossRefGoogle Scholar
  43. Schindler K (1885) Die Forste der in Verwaltung des K.K. Ackerbau-Ministeriums stehenden Staats- und Fondsgüter. Druck und Verlag der kaiserlich-königlichen Hof- und Staatsdruckerei, WienGoogle Scholar
  44. Schindler K (1889) Die Forste der in Verwaltung des K.K. Ackerbau-Ministeriums stehenden Staats- und Fondsgüter. Druck und Verlag der kaiserlich-königlichen Hof- und Staatsdruckerei, WienGoogle Scholar
  45. Schindler D, Melillo JM, Tian H, McGuire AD, Kicklighter DW, Kittel T, Rosenbloom N, Running S, Thornton P, Ojima D, Parton WJ, Kelly R, Sykes MT, Neilson R, Rizzo B (2000) Contribution of increasing CO2 and climate to carbon storage by ecosystems in the United States. Science 287:2004–2006CrossRefGoogle Scholar
  46. Schmid S, Zierl B, Bugmann H (2006) Analyzing the carbon dynamics of central European forests: comparison of Biome-BGC simulations with measurements. Reg Environ Change 6:167–180CrossRefGoogle Scholar
  47. Sieferle RP, Krausmann F, Schandl H, Winiwarter V (2006) Das Ende der Fläche. Zum gesellschaftlichen Stoffwechsel der Industrialisierung. Böhlau, KölnGoogle Scholar
  48. Sitch S, Smith B, Prentice IC, Arneth A, Bondeau A, Cramer W, Kaplan JO, Levis S, Lucht W, Sykes MT, Thonicke K, Venevsky S (2003) Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Glob Change Biol 9(2):161–185CrossRefGoogle Scholar
  49. Umweltbundesamt (2006) BORIS (Boden - Rechnergestütztes Informationssystem). Accessed 29 August 2006Google Scholar
  50. Uusivuori J, Lehto E, Palo M (2002) Population, income and ecological conditions as determinants of forest area variation in the tropics. Glob Environ Change 12(4):313–323CrossRefGoogle Scholar
  51. Watson RT, Noble IR, Bolin B, Ravindranath NH, Verardo DJ, Dokken DJ (2000) Land use, land-use change, and forestry. A special report of the IPCC. Cambridge University Press, CambridgeGoogle Scholar
  52. Weiss P, Schieler K, Schadauer K, Radunsky K, Englisch M (2000) Die Kohlenstoffbilanz des österreichischen Waldes und Betrachtungen zum Kyoto-Protokoll. Umweltbundesamt, WienGoogle Scholar
  53. Wernick I, Waggoner PE, Ausubel JH (1998) Searching for leverage to conserve forests. J Ind Ecol 1(3):125–145CrossRefGoogle Scholar
  54. Wessely J (1853) Die oesterreichischen Alpenlaender und ihre Forste. Wilhelm Braumüller, WienGoogle Scholar
  55. Wessely J (1882) Forstliches Jahrbuch für Oesterreich - Ungarn. Oesterreichs Donauländer. II. Theil: Spezial-Gemälde der Donauländer. Carl Fromme, WienGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Simone Gingrich
    • 1
  • Karl-Heinz Erb
    • 1
  • Fridolin Krausmann
    • 1
  • Veronika Gaube
    • 1
  • Helmut Haberl
    • 1
  1. 1.Institute for Social Ecology, Faculty of Interdisciplinary Studies (Klagenfurt – Vienna – Graz)Klagenfurt UniversityViennaAustria

Personalised recommendations