Journal of Geographical Systems

, Volume 20, Issue 1, pp 57–83 | Cite as

Modeling and simulating industrial land-use evolution in Shanghai, China

Original Article


This study proposes a cellular automata-based Industrial and Residential Land Use Competition Model to simulate the dynamic spatial transformation of industrial land use in Shanghai, China. In the proposed model, land development activities in a city are delineated as competitions among different land-use types. The Hedonic Land Pricing Model is adopted to implement the competition framework. To improve simulation results, the Land Price Agglomeration Model was devised to simulate and adjust classic land price theory. A new evolutionary algorithm-based parameter estimation method was devised in place of traditional methods. Simulation results show that the proposed model closely resembles actual land transformation patterns and the model can not only simulate land development, but also redevelopment processes in metropolitan areas.


Urban land use Industrial spatial structure Spatial analysis Cellular automata Genetic algorithm Shanghai 

JEL Classification




This research was funded by the Ministry of Education of China (Grant 11JJDZH006), the Ford Foundation (0155-0883), and Globalink Research Award of Mitacs. The research was also supported by NSERC CREATE AMETHYST Program at the University of Lethbridge and the Program for Professor of Special Appointment (Eastern Scholar JZ2014006) at Shanghai Institutions of Higher Learning. We appreciate greatly the constructive comments and suggestions from anonymous reviewers.


  1. Alonso W (1964) Location and land use: toward a general theory of land rent. Harvard University Press, CambridgeCrossRefGoogle Scholar
  2. Al-shalabi M, Billa L, Pradhan B, Mansor S, Al-Sharif AA (2012) Modelling urban growth evolution and land-use changes using GIS based cellular automata and SLEUTH models: the case of Sana’a metropolitan city, Yemen. Environ Earth Sci 70(1):425–437CrossRefGoogle Scholar
  3. Anas A, Arnott R, Small KA (1998) Urban spatial structure. J Econ Lit 36(3):1426–1464Google Scholar
  4. Batty M (1998) Urban evolution on the desktop: simulation with the use of extended cellular automata. Environ Plan A 30(11):1943–1967CrossRefGoogle Scholar
  5. Batty M, Hudson-Smith A (2005) Urban simulacra: London. Arch Des 75(6):42–47Google Scholar
  6. Batty M, Couclelis H, Eichen M (1997) Urban systems as cellular automata. Environ Plan B Plan Des 24(2):159–164CrossRefGoogle Scholar
  7. Berry BJ (1964) Cities as systems within systems of cities. Pap Reg Sci 13(1):147–163CrossRefGoogle Scholar
  8. Bodenmann B, Axhausen K (2010) Synthesis report on the state of the art on firmographics. Institute for Transport Planning and Systems, ETH, ZurichGoogle Scholar
  9. Boschma RA, Frenken K (2006) Applications of evolutionary economic geography. In: Frenken K (ed) Applied evolutionary economics and economic geography. Edward Elgar Publishing, CheltenhamGoogle Scholar
  10. Boschma RA, Wenting R (2007) The spatial evolution of the British automobile industry: does location matter? Ind Corp Change 16(2):213–238CrossRefGoogle Scholar
  11. Brueckner JK (2011) Lectures on urban economics. MIT Press, CambridgeGoogle Scholar
  12. Cervero R, Landis J (1993) Assessing the impacts of urban rail transit on local real estate markets using quasi-experimental comparisons. Transp Res Part A Policy Pract 27(1):13–22CrossRefGoogle Scholar
  13. Christodoulou A (2010) STUDI: a model to simulate the impacts of new metro lines on urban development in London. Doctoral dissertation, University College LondonGoogle Scholar
  14. Clark WA, Burt JE (1980) The impact of workplace on residential relocation. Ann Assoc Am Geogr 70(1):59–66CrossRefGoogle Scholar
  15. Couclelis H (2001) Why I no longer work with agents. Paper presented at the special workshop on agent-based models of land-use, land-cover change, CSISS, Irvine.
  16. De Bok M, Sanders F (2005) Firm relocation and accessibility of locations empirical results from the Netherlands. Transp Res Rec J Transp Res Board 1902:35–43CrossRefGoogle Scholar
  17. De Bok M, van Oort F (2011) Agglomeration economies, accessibility and the spatial choice behavior of relocating firms. J Transp Land Use 4(1):5–24CrossRefGoogle Scholar
  18. Espey M, Lopez H (2000) The impact of airport noise and proximity on residential property values. Growth Change 31(3):408–419CrossRefGoogle Scholar
  19. Fan J, Li P (2009) The scientific foundation of major function oriented zoning in China. J Geogr Sci 19(5):515–531CrossRefGoogle Scholar
  20. Fischer MM, Nijkamp P (2012) Spatial dynamics of European integration: regional and policy issues at the turn of the century. Springer, New YorkGoogle Scholar
  21. Fujita M, Thisse J-F (2013) Economics of agglomeration: cities, industrial location, and globalization. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  22. Garreau J (2011) Edge city: life on the new frontier. Anchor, New YorkGoogle Scholar
  23. Harvey J, Jowsey E (2004) Urban land economics. Palgrave Macmillan, BasingstokeCrossRefGoogle Scholar
  24. Henderson V, Mitra A (1996) The new urban landscape: developers and edge cities. Reg Sci Urban Econ 26(6):613–643CrossRefGoogle Scholar
  25. Henley A (1994) Industrial deconcentration in UK manufacturing since 1980. Manch Sch 62(1):40–59CrossRefGoogle Scholar
  26. Hilferink M, Rietveld P (1999) Land Use Scanner: an integrated GIS based model for long term projections of land use in urban and rural areas. J Geogr Syst 1(2):155–177CrossRefGoogle Scholar
  27. Hudalah D, Viantari D, Firman T, Woltjer J (2013) Industrial land development and manufacturing deconcentration in Greater Jakarta. Urban Geogr 34(7):950–971CrossRefGoogle Scholar
  28. Irwin EG, Bockstael NE (2002) Interacting agents, spatial externalities and the evolution of residential land use patterns. J Econ Geogr 2(1):31–54CrossRefGoogle Scholar
  29. Irwin EG, Bockstael NE (2004) Land use externalities, open space preservation, and urban sprawl. Reg Sci Urban Econ 34(6):705–725CrossRefGoogle Scholar
  30. Lefcoe G (2005) Regulation of superstores: the legality of zoning ordinances emerging from the skirmishes between wal-mart and the united food and commercial workers union. Ark Law Rev 58:833Google Scholar
  31. Levy S, Martens K, Heijden R (2011) An agent-based model of transport and land use policy coordination between municipalities. Paper presented at the Proc. Bijdrage aan Het Colloquium Vervoersplanologisch Speurwerk, Antwerpen (November 2011)Google Scholar
  32. Lin GC (2009) Developing China: land, politics and social conditions. Routledge, AbingdonGoogle Scholar
  33. Luo J, Wei YD (2004) A geostatistical modeling of urban land values in Milwauke, Wisconsine. Geogr Inf Sci 10(1):49–57Google Scholar
  34. Marton AM, Wu W (2006) Spaces of globalisation: institutional reforms and spatial economic development in the Pudong new area, Shanghai. Habitat Int 30(2):213–229CrossRefGoogle Scholar
  35. Mieszkowski P, Mills E (1993) The causes of metropolitan suburbanization. J Econ Perspect 7(3):135–147CrossRefGoogle Scholar
  36. Moreno N, Menard A, Marceau DJ (2008) VecGCA: a vector-based geographic cellular automata model allowing geometric transformations of objects. Environ Plan 35(4):647–665CrossRefGoogle Scholar
  37. Nadiri MI, Mamuneas TP (1996) Contribution of highway capital to industry and national productivity growth. Federal Highway Administration Washington, DC, Washington, DCGoogle Scholar
  38. Nanda A, Yeh J-H (2014) Spatio-temporal diffusion of residential land prices across Taipei regions. SpringerPlus 3(1):1CrossRefGoogle Scholar
  39. Ning Y, Yan Z (1995) The changing industrial and spatial structure in Shanghai. Urban Geogr 16(7):577–594CrossRefGoogle Scholar
  40. Parker DC, Manson SM, Janssen MA, Hoffmann MJ, Deadman P (2003) Multi-agent systems for the simulation of land-use and land-cover change: a review. Ann Assoc Am Geogr 93(2):314–337CrossRefGoogle Scholar
  41. Pellenbarg PH, Van Wissen LJ, Van Dijk J (2002) Firm relocation: state of the art and research prospects. University of Groningen, GroningenGoogle Scholar
  42. Peng R, Wheaton WC (1994) Effects of restrictive land supply on housing in Hong Kong: an econometric analysis. J Hous Res 5(2):263Google Scholar
  43. Qiu R, Xu W (2017) Modes of land development in Shanghai. Land Use Policy 61:475–486CrossRefGoogle Scholar
  44. Qiu R, Xu W, Zhang J (2015) The transformation of urban industrial land use: a quantitative method. J Urban Manag 4(1):40–52CrossRefGoogle Scholar
  45. Raymond Y (1998) Housing price, land supply and revenue from land sales. Urban Stud 35(8):1377–1392CrossRefGoogle Scholar
  46. Rose LA (1989) Urban land supply: natural and contrived restrictions. J Urban Econ 25(3):325–345CrossRefGoogle Scholar
  47. Rosenthal SS, Strange WC (2003) Geography, industrial organization, and agglomeration. Rev Econ Stat 85(2):377–393CrossRefGoogle Scholar
  48. Schotten K, Goetgeluk R, Hilferink M, Rietveld P, Scholten H (2001) Residential construction, land use and the environment. Simulations for the Netherlands using a GIS-based land use model. Environ Model Assess 6(2):133–143CrossRefGoogle Scholar
  49. Taleai M, Sharifi A, Sliuzas R, Mesgari M (2007) Evaluating the compatibility of multi-functional and intensive urban land uses. Int J Appl Earth Obs Geoinf 9(4):375–391CrossRefGoogle Scholar
  50. Teye A, Ahelegbey D (2016) Detecting spatial and temporal house price diffusion in the Netherlands: a Bayesian network approach. Available at SSRN:
  51. Thiele JC, Kurth W, Grimm V (2012) RNETLOGO: an R package for running and exploring individual-based models implemented in NETLOGO. Methods Ecol Evol 3(3):480–483CrossRefGoogle Scholar
  52. Viehe FW (1981) Black gold suburbs the influence of the extractive industry on the suburbanization of Los Angeles, 1890–1930. J Urban Hist 8(1):3–26CrossRefGoogle Scholar
  53. Walker R (2001) Industry builds the city: the suburbanization of manufacturing in the San Francisco Bay Area, 1850–1940. J Hist Geogr 27(1):36–57CrossRefGoogle Scholar
  54. Weber A, Friedrich CJ (1962) Theory of the location of industries. University of Chicago Press Chicago, ChicagoGoogle Scholar
  55. White R, Engelen G (1993) Cellular automata and fractal urban form: a cellular modelling approach to the evolution of urban land-use patterns. Environ Plan A 25:1175–1199CrossRefGoogle Scholar
  56. White R, Uljee I, Engelen G (2012) Integrated modelling of population, employment and land-use change with a multiple activity-based variable grid cellular automaton. Int J Geogr Inf Sci 26(7):1251–1280CrossRefGoogle Scholar
  57. Wilensky U (1999) NetLogo. Center for Connected Learning and Computer-Based Modeling, Northwestern University, Evanston, IL.
  58. Willis KG, Garrod G, Harvey D (1998) A review of cost–benefit analysis as applied to the evaluation of new road proposals in the UK. Transp Res Part D Transp Environ 3(3):141–156CrossRefGoogle Scholar
  59. Wu FL (1998) Simulating urban encroachment on rural land with fuzzy-logic-controlled cellular automata in a geographical information system. J Environ Manag 53(4):293–308CrossRefGoogle Scholar
  60. Wu WP (2008) Migrant settlement and spatial distribution in metropolitan Shanghai. Prof Geogr 60(1):101–120CrossRefGoogle Scholar
  61. Wu FL, Martin D (2002) Urban expansion simulation of Southeast England using population surface modelling and cellular automata. Environ Plan A 34(10):1855–1876CrossRefGoogle Scholar
  62. Xu W (2004) The changing dynamics of land-use change in rural China: a case study of Yuhang, Zhejiang Province. Environ Plan A 36(9):1595–1615CrossRefGoogle Scholar
  63. Yeh AG, Wu FL (1996) The new land development process and urban development in Chinese cities. Int J Urban Reg Res 20(2):330–353CrossRefGoogle Scholar
  64. Zhu Y (2000) In situ urbanization in rural China: case studies from Fujian Province. Dev Change 31(2):413–434CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of GeographyUniversity of LethbridgeLethbridgeCanada
  2. 2.Department of Mathematics and Computer ScienceUniversity of LethbridgeLethbridgeCanada

Personalised recommendations