Journal of Geographical Systems

, Volume 19, Issue 1, pp 65–92 | Cite as

Sectoral scope and colocalisation of Spanish manufacturing industries

  • Marta R. Casanova
  • Vicente Orts
  • José M. Albert
Original Article


In this paper, we use distance-based methods, specifically a slight variation of Ripley’s K function and a bivariate generalisation of this function, to explore the detailed location pattern of the Spanish manufacturing industry, the scope of localisation and the tendency towards colocalisation between horizontally and vertically linked industries. To do so, we use micro-geographic data, considering a narrowly defined industry classification. Our results show heterogeneous location patterns, but with a significant tendency towards localisation. The sectoral scope is very sensitive to the degree of homogeneity of the activities in each sector. The more homogeneous the activities in a specific sector are, the more similarities we find in the spatial location patterns among its industries. Finally, although the patterns of colocalisation detected are sensitive to the counterfactuals used, between 20 and 48% of the pairs of industries with strong input–output linkages considered in this study show a significant tendency to colocalisation, and among them 74% are vertically linked industries.


Spatial location Distance-based method Ripley’s K function Sectoral scope Colocalisation Vertical and horizontal linkages 

JEL Classification

C15 C60 R12 



The authors gratefully acknowledge financial support from the Ministerio de Ciencia e Innovación (ECO2014-58975-P) and Generalitat Valenciana (PROMETEOII/2014/054).


  1. Albert JM, Casanova MR, Orts V (2012) Spatial location patterns of Spanish manufacturing firms. Pap Reg Sci 91(1):107–136CrossRefGoogle Scholar
  2. Alonso-Villar O, Chamorro-Rivas JM, González-Cerdeira X (2004) Agglomeration economies in manufacturing industries: the case of Spain. Appl Econ 36:2103–2116CrossRefGoogle Scholar
  3. Amiti M (1997) Specialisation patterns in Europe. Discussion paper 363, Centre for Economic Performance, LondonGoogle Scholar
  4. Arbia G, Espa G, Quah D (2008) A class of spatial econometric methods in the empirical analysis of clusters of firms in the space. Empir Econ 34:81–103CrossRefGoogle Scholar
  5. Barlet M, Briant A, Crusson L (2013) Location patterns of service industries in France: a distance-based approach. Reg Sci Urban Econ 43(2):338–351CrossRefGoogle Scholar
  6. Behrens K, Bougna T (2015) An anatomy of the geographical concentration of Canadian manufacturing industries. Reg Sci Urban Econ 51:47–69CrossRefGoogle Scholar
  7. Brülhart M (2001) Evolving geographical concentration of European manufacturing industries. Weltwirtschaftliches Arch 137(2):215–243CrossRefGoogle Scholar
  8. Callejón M (1997) Concentración geográfica de la industria y economías de aglomeración. Econ Ind 317:61–68Google Scholar
  9. De Dominicis L, Arbia G, De Groot HL (2007) The spatial distribution of economic activities in Italy. Tinbergen Institute Discussion Paper No. 07-094/3Google Scholar
  10. Devereux MP, Griffith R, Simpson H (2004) The geographic distribution of production activity in the UK. Reg Sci Urban Econ 34:533–564CrossRefGoogle Scholar
  11. Dixon PM (2002) Ripley’s K function. Encycl Environ 3:1796–1803Google Scholar
  12. Duranton G, Overman HG (2005) Testing for localization using micro-geographic data. Rev Econ Stud 72:1077–1106CrossRefGoogle Scholar
  13. Duranton G, Overman HG (2008) Exploring the detailed location patterns of UK manufacturing industries using microgeographic data. J Reg Sci 48(1):213–243CrossRefGoogle Scholar
  14. Ellison G, Glaeser E (1997) Geographic concentration in US manufacturing industries: a dartboard approach. J Polit Econ 105(5):889–927CrossRefGoogle Scholar
  15. Ellison G, Glaeser E, Kerr W (2010) What causes industry agglomeration? Evidence from coagglomeration patterns. Am Econ Rev 100:1195–1213CrossRefGoogle Scholar
  16. Fujita M, Krugman P, Venables AJ (1999) The spatial economy: cities, regions and international trade. MIT Press, CambridgeGoogle Scholar
  17. Guimarães P, Figueiredo O, Woodward D (2011) Accounting for neighboring effects in measures of spatial concentration. J Reg Sci 51(4):678–693CrossRefGoogle Scholar
  18. Hoover EM (1948) The location of economic activity. McGraw Hill, New YorkGoogle Scholar
  19. Koh HJ, Riedel N (2014) Assessing the localization pattern of German manufacturing and service industries: a distance-based approach. Reg Stud 48(5):823–843CrossRefGoogle Scholar
  20. Krugman P (1991a) Geography and trade. MIT Press, CambridgeGoogle Scholar
  21. Krugman P (1991b) Increasing returns and economic geography. J Polit Econ 99(3):413–499CrossRefGoogle Scholar
  22. Marcon E, Puech F (2003) Evaluating the geographic concentration of industries using distance-based methods. J Econ Geogr 3(4):409–428CrossRefGoogle Scholar
  23. Marcon E, Puech F (2010) Measures of the geographic concentration of industries: improving distance-based methods. J Econ Geogr 10(5):745–762CrossRefGoogle Scholar
  24. Marshall A (1890) Principles of economics. MacMillan, LondonGoogle Scholar
  25. Maurel F, Sédillot B (1999) A measure of the geographic concentration in French manufacturing industries. Reg Sci Urban Econ 29(5):575–604CrossRefGoogle Scholar
  26. Nakajima K, Saito YU, Uesugi I (2012) Measuring economic localization: evidence from Japanese firm-level data. J Jpn Int Econ 26(2):201–220CrossRefGoogle Scholar
  27. Ottaviano G, Puga D (1998) Agglomeration in the global economy: a survey of the ‘new economic geography’. World Econ 21:707–731CrossRefGoogle Scholar
  28. Puga D (1999) The rise and fall of regional inequalities. Eur Econ Rev 43(2):303–334CrossRefGoogle Scholar
  29. Puga D (2002) European regional policies in light of recent location theories. J Econ Geogr 2:373–406CrossRefGoogle Scholar
  30. Quah D, Simpson H (2003) Spatial cluster empirics. London School of Economics Working Paper SeriesGoogle Scholar
  31. Ripley BD (1976) The second-order analysis of stationary point processes. J Appl Probab 13:255–266CrossRefGoogle Scholar
  32. Ripley BD (1977) Modelling spatial patterns. J R Stat Soc B (Methodol) 39:172–192Google Scholar
  33. Ripley BD (1979) Test of ‘randomness’ for spatial patterns. J R Stat Soc B (Methodol) 41:368–374Google Scholar
  34. Ripley BD (1981) Spatial statistics. Wiley, New YorkCrossRefGoogle Scholar
  35. Rosenthal SS, Strange WC (2001) The determinants of agglomeration. J Urban Econ 50(2):191–229CrossRefGoogle Scholar
  36. Venables AJ (1995) Economic integration and the location of firms. Am Econ Rev 85(2):296–300Google Scholar
  37. Von Thünen J (1826) Der Isolierte Staad in Beziehung auf Landwirtschaft un NationalÄokonomie. Hamburg: Perthes. English translation: The isolated state. Oxford, Pergammon Press (1966)Google Scholar
  38. Weber A (1909) Ueber den Standort der Industrien. Täubingen: J.C.B. Mohr. English translation: The Theory of the Location of Industries. Chicago University Press (1929)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Marta R. Casanova
    • 1
  • Vicente Orts
    • 2
  • José M. Albert
    • 3
  1. 1.Department of Applied EconomicsUniversity of ValenciaValenciaSpain
  2. 2.Department of Economics and Institute of International EconomicsUniversity Jaume ICastellónSpain
  3. 3.Department of Economics and Institute for Local DevelopmentUniversity Jaume ICastellónSpain

Personalised recommendations