Journal of Geographical Systems

, Volume 14, Issue 2, pp 189–208 | Cite as

Comparing the fractality of European urban neighbourhoods: do national contexts matter?

  • Isabelle ThomasEmail author
  • Pierre Frankhauser
  • Dominique Badariotti
Original Article


The objective of this paper is to show that morphological similarities between built-up urban surfaces are greater across borders than within cities in Europe: living, architectural and planning trends are international. The spatial arrangement of built-up areas is analysed here by means of fractal indices using a set of 97 town sections selected from 18 European urban agglomerations. The fractal dimension is estimated by correlation techniques. Results confirm that morphological similarities are higher across countries/cities than within. Moreover, two types of fractal laws are considered: one uses the basic fractal scaling law; the other introduces a prefactor a that is often called a “form factor” in the fractal literature. Differences in the results obtained by both laws are explained empirically as well as theoretically, and suggestions are made for further measurements.


Fractal analysis Urban planning Morphology Europe 

JEL Classification

C1  R14 O2 


  1. Appleby S (1996) Multifractal characterization of the distribution pattern of the human population. Geogr Anal 28(2):147–160. doi: 10.1023/A:1019149015867 CrossRefGoogle Scholar
  2. Arlinghaus S, Arlinghaus W (1989) The fractal theory of central place geometry: a Diophantine analysis of fractal generators for arbitrary Loschian numbers. Geogr Anal 21(2):103–121CrossRefGoogle Scholar
  3. Badariotti D (2005) Des fractales pour l’urbanisme ? Quelques pistes de réflexion à partir de l’exemple de Strasbourg-Kehl. Revue de Géographie du Québec 49(137):133–256Google Scholar
  4. Batty M (1991) Cities as Fractals: simulating growth and form. In: Earnshaw RA (ed) Fractals and Chaos. Springer, New York, pp 41–69Google Scholar
  5. Batty M (2005) Cities and Complexity: Understanding Cities with Cellular Automata, Agent-Based Models and Fractals. The MIT Press, Cambridge, MAGoogle Scholar
  6. Batty M, Longley P (1994) Fractal Cities. Academic Press, New YorkGoogle Scholar
  7. Batty M, Xie Y (1996) Preliminary evidence for a theory of the fractal city. Environ Plan 28A(10):1745–1762. doi: 10.1068/a281745 CrossRefGoogle Scholar
  8. Benguigui L, Czamanski D, Marinov M, Portugali Y (2000) When and where is a city fractal? Environ Plan 27B(4):507–519. doi: 10.1068/b2617 Google Scholar
  9. Carvalho R, Penn A (2004) Scaling and universality in the micro-structure of urban space. Physica-A 332(1):539–547. doi: 10.1016/j.physa.2003.10.024 CrossRefGoogle Scholar
  10. Cavailhès J, Frankhauser P, Peeters D, Thomas I (2004) Where Alonso meets Sierpinski: an urban economic model of a fractal metropolitan area. Environ Plan A 36(8):1471–1498. doi: 10.1068/a36126 CrossRefGoogle Scholar
  11. Corbusier Le (1971) La charte d’Athènes—1933–1942. Seuil, ParisGoogle Scholar
  12. De Keersmaecker M-L, Frankhauser P, Thomas I (2003) Using fractal dimensions to characterize intra-urban diversity: the example of Brussels. Geogr Anal 35(4):310–328. doi: 10.1353/geo.2003.0014 Google Scholar
  13. Fotheringham A, Batty M, Longley P (1989) Diffusion-limited aggregation and the fractal nature of urban growth. Pap Reg Sci Assoc 67(1):55–69. doi: 10.1007/BF01934667 CrossRefGoogle Scholar
  14. Frankhauser P (1994) La fractalité des structures urbaines. Anthropos, Collection Villes, ParisGoogle Scholar
  15. Frankhauser P (1998) The fractal approach: a new tool for the spatial analysis of urban agglomerations. Popul Engl Sel 10(1):205–240Google Scholar
  16. Frankhauser P (ed) (2003) Morphologie des Villes Emergentes en Europe à travers les analyses fractales. Rapport de Recherche 2000–2003. PUCA (France), Ministère de l’Equipement, des Transports et du Logement. Pdf version in French:
  17. Frankhauser P (2008) Fractal geometry for measuring and modelling urban patterns. In: Albeverio S, Andrey D, Giordano P, Vancheri A (eds) The dynamics of complex urban systems: an interdisciplinary approach. Springer, New York, pp 241–243Google Scholar
  18. Frankhauser P, Houot H, Tannier C, Vuidel G (2008) Vers des déplacements périurbains plus durables: propositions de modèles fractals opérationnels d’urbanisation. Report PREDIT, project 05MT5020, 114 pGoogle Scholar
  19. Goodchild M, Mark D (1987) The fractal nature of geographic phenomena. Ann Assoc Am Geogr 77(2):265–278. doi: 10.1111/j.1467-8306.1987.tb00158.x CrossRefGoogle Scholar
  20. Gouyet J-F (1992) Physique et structures fractales. Masson, ParisGoogle Scholar
  21. Lagarias A (2007) Fractal analysis of the urbanization at the outskirts of the city: models, measurement and explanation. Cybergeo, Article 391Google Scholar
  22. Lam N, De Cola L (eds) (2002) Fractals in Geography. The Blackburn Press, Caldwell, NJGoogle Scholar
  23. Longley P, Batty M (1989) On the fractal measurement of geographical boundaries. Geogr Anal 21(1):47–67CrossRefGoogle Scholar
  24. MacLennan M, Fotheringham S, Batty M, Longley P (1991) Fractal geometry and spatial phenomena. A Bibliography. NCGIA report 91–1, 53 pGoogle Scholar
  25. Mandelbrot B (1982) The fractal geometry of nature. Freeman, San FranciscoGoogle Scholar
  26. Mattila P (1995) Geometry of sets and measures in Euclidean spaces: fractals and rectifiability. Cambridge University Press, CambridgeGoogle Scholar
  27. Qin Y, Liu K (2004) Advances in applied studies of fractal theory in geography in China. J Geogr Sci 14(1):62–68. doi: 10.1007/BF02841109 CrossRefGoogle Scholar
  28. Salingaros N (2003) Connecting the fractal city. Keynote speech, Biennial of towns and town planners in Europe (Barcelona).
  29. Schweitzer F, Steinbrink J (1998) Estimation of megacity growth: simple rules versus complex phenomena. Appl Geogr 18(1):69–81. doi: 10.1016/S0143-6228(97)00047-7 CrossRefGoogle Scholar
  30. Shen G (2002) Fractal dimension and fractal growth of urbanized areas. Int J Geogr Inf Sci 16(5):419–437. doi: 10.1080/13658810210137013 CrossRefGoogle Scholar
  31. Sun W, Xu G, Gong P, Lian S (2006) Fractal analysis of remotely sensed images: a review of methods and applications. Int J Remote Sens 27(2):4963–4990. doi: 10.1080/01431160600676695 CrossRefGoogle Scholar
  32. Tannier C, Pumain D (2005) Fractales et géographie urbaine: aperçu théorique et application pratique. Cybergeo, article 307Google Scholar
  33. Thomas I, Frankhauser P, De Keersmaecker M-L (2007) Fractal dimension versus density of the built-up surfaces in the periphery of Brussels. Pap Reg Sci 86(2):287–307. doi: 10.1111/j.1435-5957.2007.00122.x CrossRefGoogle Scholar
  34. Thomas I, Frankhauser P, Biernacki C (2008a) The fractal morphology of the built-up landscape. Landsc Urban Plan 84:99–115. doi: 10.1016/j.landurbplan.2007.07.002 CrossRefGoogle Scholar
  35. Thomas I, Tannier C, Frankhauser P (2008b) Is there a link between fractal dimension and residential choice at a regional level? Cybergeo, article 413Google Scholar
  36. Vanneste D, Thomas I, Vanderstraeten L (2008) The spatial structure(s) of the Belgian housing stock. J Housing Built Environ 23(3):173–198. doi: 10.1007/s10901-008-9111-3 CrossRefGoogle Scholar
  37. White R, Engelen G (1993) Cellular automata and fractal urban form: a cellular modelling approach to the evolution of urban land use patterns. Environ Plan A 25(8):1175–1199. doi: 10.1068/a251175 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Isabelle Thomas
    • 1
    • 2
    Email author
  • Pierre Frankhauser
    • 3
  • Dominique Badariotti
    • 4
  1. 1.CORE (Centre of Operations Research and Econometrics) and Department of GeographyU.C.LLouvain-la-NeuveBelgium
  2. 2.National Fund for Scientific Research (FRS-FNRS)BrusselsBelgium
  3. 3.THEMA (CNRS UMR 6049)Université de Franche-ComtéBesançonFrance
  4. 4.Laboratoire Image Ville Environnement (CNRS UMR 7230)Université de StrasbourgStrasbourgFrance

Personalised recommendations