Journal of Geographical Systems

, Volume 6, Issue 4, pp 325–354 | Cite as

A general framework for error analysis in measurement-based GIS Part 1: The basic measurement-error model and related concepts

  • Yee Leung
  • Jiang-Hong Ma
  • Michael F. Goodchild


This is the first of a four-part series of papers which proposes a general framework for error analysis in measurement-based geographical information systems (MBGIS). The purpose of the series is to investigate the fundamental issues involved in measurement error (ME) analysis in MBGIS, and to provide a unified and effective treatment of errors and their propagation in various interrelated GIS and spatial operations. Part 1 deals with the formulation of the basic ME model together with the law of error propagation. Part 2 investigates the classic point-in-polygon problem under ME. Continuing to Part 3 is the analysis of ME in intersections and polygon overlays. In Part 4, error analyses in length and area measurements are made. In this present part, a simple but general model for ME in MBGIS is introduced. An approximate law of error propagation is then formulated. A simple, unified, and effective treatment of error bands for a line segment is made under the name of “covariance-based error band”. A new concept, called “maximal allowable limit”, which guarantees invariance in topology or geometric-property of a polygon under ME is also advanced. To handle errors in indirect measurements, a geodetic model for MBGIS is proposed and its error propagation problem is studied on the basis of the basic ME model as well as the approximate law of error propagation. Simulation experiments all substantiate the effectiveness of the proposed theoretical construct.

Key words

Covariance-based error band error propagation geodetic model geographical information systems maximal allowable limit measurement error 

JEL Classification

C10 C31 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Yee Leung
    • 1
  • Jiang-Hong Ma
    • 2
  • Michael F. Goodchild
    • 3
  1. 1.Department of Geography and Resource Management, Center for Environmental Policy and Resource Management, and Joint Laboratory for Geoinformation ScienceThe Chinese University of Hong KongHong Kong
  2. 2.Department of Mathematics and Information ScienceChang’an University, Xi’anP.R. China
  3. 3.Department of GeographyUniversity of CaliforniaSanta BarbaraCaliforniaUSA

Personalised recommendations