Spanish Economic Review

, Volume 8, Issue 3, pp 189–197 | Cite as

A Non-cooperative Approach to Bankruptcy Problems

  • Ignacio García-Jurado
  • Julio González-Díaz
  • Antonio Villar
Regular Article


We propose an elementary game form that allows to obtain the allocations proposed by any acceptable bankruptcy rule as the unique payoff vector of the corresponding Nash equilibria.


Bankruptcy Non-cooperative games Nash equilibrium Strong equilibrium 

JEL Classification

D63 C72 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aumann R (1959) Acceptable points in general cooperative n-person games. In: Tucker AW, Luce RD (eds) Contributions to the theory of games IV. Princeton University Press, PrincetonGoogle Scholar
  2. Chun Y (1989) A noncooperative justification for the Egalitaria surplus sharing. Math Soc Sci 17:245–261CrossRefGoogle Scholar
  3. Corchón LC, Herrero C (2004) A decent proposal. Span Econ Rev 6:107–125CrossRefGoogle Scholar
  4. Dagan N, Serrano R, Volij O (1997) A noncooperative view of consistent bankruptcy rules. Games Econ Behav 18:55–72CrossRefGoogle Scholar
  5. Dagan N, Serrano R, Volij O (1999) Feasible implementation of taxation methods. Rev Econ Des 4:57–72Google Scholar
  6. de Frutos MA (1999) Coalitional manipulation in a bankruptcy problem. Rev Econ Des 4:255–272Google Scholar
  7. Herrero C (2003) Equal awards versus equal losses: duality in bankruptcy. In: Sertel MR (eds) Adv Econ Des. Springer, Berlin Heidelberg New YorkGoogle Scholar
  8. Herrero C, Moreno-Ternero J, Ponti G (2003) An experiment of bankruptcy. Ivie Working paper AD 2003-03Google Scholar
  9. Ju B-G (2003) Manipulation via merging and splitting in claims problems. Rev Econ Des 8:205–215Google Scholar
  10. Moreno-Ternero JD (2004) Bankruptcy rules and coalitional manipulation. Int Game Theory Rev (in press)Google Scholar
  11. Moulin H (2002) Axiomatic cost and surplus sharing. In: Arrow K, Sen A, Suzumura K (eds) Handbook of Social Choice and Welfare, vol 1. Elsevier, AmsterdamGoogle Scholar
  12. O’Neill B (1982) A problem of rights arbitration from the Talmud. Math Soc Sci 2:345–371CrossRefGoogle Scholar
  13. Serrano R (1995) Strategic bargaining, surplus sharing problems and the nucleolus. J Math Econ 24:319–329CrossRefGoogle Scholar
  14. Sonn S (1992) Sequential bargaining for bankruptcy problems. MimeoGoogle Scholar
  15. Thomson W (2003) Axiomatic and game theoretic analysis of bankruptcy and taxation problems. Math Soc Sci 45:249–297CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Ignacio García-Jurado
    • 1
  • Julio González-Díaz
    • 2
  • Antonio Villar
    • 3
  1. 1.IDEGA & Department of Statistics and ORUniversity of Santiago de CompostelaSantiago de CompostelaSpain
  2. 2.Department of Statistics and ORUniversity of Santiago de CompostelaSantiago de CompostelaSpain
  3. 3.University of Alicante & IvieAlicanteSpain

Personalised recommendations