Mathematical Programming

, Volume 102, Issue 3, pp 577–588 | Cite as

Strengthening the Lovász Open image in new window bound for graph coloring

  • Philippe Meurdesoif


The Lovász θ-number is a way to approximate the independence number of a graph, but also its chromatic number. We express the Lovász bound as the continuous relaxation of a discrete Lovász θ-number which we derive from Karger et al.’s formulation, and which is equal to the chromatic number. We also give another relaxation à la Schrijver-McEliece, which is better than the Lovász θ-number.


Combinatorial optimization SDP relaxation Graph coloring Lovász θ number 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alizadeh, F., Haeberly, J.-P., Nayakkankuppam, M.V., Overton, M.L. (1997): SDPPack User’s Guide, version 0.8 beta. Technical report, NYU Computer Science Dpt, March 1997. URL: Scholar
  2. 2.
    Alon, N. (1994): Explicit Ramsey graphs and orthonormal labelings. Electron. J. Comb. 1, # R12Google Scholar
  3. 3.
    Alon, N., Kahale, N. (1998): Approximating the independence number via the θ-function. Math. Program. 80, 253–264CrossRefGoogle Scholar
  4. 4.
    Feige, U., Kilian, J. (1996): Zero Knowledge and the Chromatic Number. In: Proceedings of the 11th Annual IEEE Conference in Computing Complexity (preliminary version), pp. 278–287Google Scholar
  5. 5.
    Frieze, A., Jerrum, M. (1995): Improved approximation algorithms for MAX k-cut and MAX BISECTION. In: Proceedings of the Fourth MPS Conference on Integer Programming and Combinatorial Optimization. SpringerGoogle Scholar
  6. 6.
    Goemans, M.X., Williamson, D.P. (1995): Improved Approximation Algorithms for Maximum Cut and Satisfiability Problems Using Semidefinite Programming. J. ACM 42, 1115–1145CrossRefzbMATHGoogle Scholar
  7. 7.
    Horn, R.A., Johnson, C.R. (1985): Matrix Analysis. Cambridge University Press, Cambridge (reedited 1999)Google Scholar
  8. 8.
    Jensen, T.R., Toft, B. (1995): Graph coloring problems. Wiley-Interscience series in discrete mathematics and optimization. Wiley, New YorkGoogle Scholar
  9. 9.
    Karger, D., Motwani, R., Sudan, M. (1998): Approximate graph coloring by semidefinite programming. J. ACM 45 (2), 246–265, March 1998CrossRefzbMATHGoogle Scholar
  10. 10.
    Knuth, D. (1994): The Sandwich Theorem. Electron. J. Comb. 1, # A1, 48 pp.Google Scholar
  11. 11.
    Lemaréchal, C., Oustry, F. (1999): Semidefinite relaxations and Lagrangian duality with application to combinatorial optimization. Rapport de Recherche Nr. 3710. InriaGoogle Scholar
  12. 12.
    Lovász, L. (1979): On the Shannon Capacity of a Graph. IEEE Trans. Inf. Theory IT-25 (1), 1–7Google Scholar
  13. 13.
    Lund, C., Yannakakis, M. (1994): On the hardness of approximating minimization problems. J. ACM 41 (5), 960–981CrossRefzbMATHGoogle Scholar
  14. 14.
    McEliece, R.J., Rodemich, E.R., Rumsey Jr., H.C. (1978): The Lovász Bound and Some Generalizations. J. Comb. Inf. Syst. Sci. 3 (3), 134–152zbMATHGoogle Scholar
  15. 15.
    Poljak, S., Rendl, F., Wolkowicz, H. (1995): A recipe for semidefinite relaxation for (0–1)-quadratic programming. J. Glob. Optim. 7, 51–73zbMATHGoogle Scholar
  16. 16.
    Schrijver, A. (1979): A Comparison of the Delsarte and Lovász Bounds. IEEE Trans. Inf. Theory IT-25 (4), 425–429Google Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  1. 1.Mathématiques Appliquées de BordeauxUniversité Bordeaux 1TalenceFrance

Personalised recommendations