Advertisement

Nonlinear chance-constrained problems with applications to hydro scheduling

  • Andrea LodiEmail author
  • Enrico Malaguti
  • Giacomo Nannicini
  • Dimitri Thomopulos
Full Length Paper Series B
  • 90 Downloads

Abstract

We present a Branch-and-Cut algorithm for a class of nonlinear chance-constrained mathematical optimization problems with a finite number of scenarios. Unsatisfied scenarios can enter a recovery mode. This class corresponds to problems that can be reformulated as deterministic convex mixed-integer nonlinear programming problems with indicator variables and continuous scenario variables, but the size of the reformulation is large and quickly becomes impractical as the number of scenarios grows. The Branch-and-Cut algorithm is based on an implicit Benders decomposition scheme, where we generate cutting planes as outer approximation cuts from the projection of the feasible region on suitable subspaces. The size of the master problem in our scheme is much smaller than the deterministic reformulation of the chance-constrained problem. We apply the Branch-and-Cut algorithm to the mid-term hydro scheduling problem, for which we propose a chance-constrained formulation. A computational study using data from ten hydroplants in Greece shows that the proposed methodology solves instances faster than applying a general-purpose solver for convex mixed-integer nonlinear programming problems to the deterministic reformulation, and scales much better with the number of scenarios.

Keywords

Chance-constraints Outer approximation Benders decomposition Branch-and-Cut Hydro scheduling 

Mathematics Subject Classification

90C15 Stochastic Programming 49M27 Decomposition Methods 90C57 Branch-and-Cut 

Notes

Acknowledgements

The authors are extremely grateful to Costas Baslis and Anastasios Bakirtzis for sharing the data on the Greek power system discussed in [22], to Alberto Borghetti for several helpful discussions, to the anonymous referees and the associate editor for their comments that helped significantly improve the paper. The first and fourth authors acknowledge the support of MIUR, Italy, under the Grant PRIN 2012. The second author acknowledges the support of the Air Force Office of Scientific Research under Award Number FA9550- 17-1-0025. Traveling support by the EU ITN 316647 “Mixed-Integer Nonlinear Optimization” is acknowledged by the third author. Part of this research was carried out at the Singapore University of Technology and Design, supported by grant SRES11012 and IDC grant IDSF1200108.

References

  1. 1.
    Charnes, A., Cooper, W.W., Symonds, G.H.: Cost horizons and certainty equivalents: an approach to stochastic programming of heating oil. Manage. Sci. 4(3), 235–263 (1958)CrossRefGoogle Scholar
  2. 2.
    Prekopa, A.: On probabilistic constrained programmming. In: Kuhn, H.W. (ed.) Proceedings of the Princeton Symposium on Mathematical Programming, pp. 113–138. Princeton University Press, Princeton, NJ (1970)CrossRefGoogle Scholar
  3. 3.
    Dupačová, J., Gaivoronski, A., Kos, Z., Szántai, T.: Stochastic programming in water management: a case study and a comparison of solution techniques. Eur. J. Oper. Res. 52(1), 28–44 (1991)zbMATHCrossRefGoogle Scholar
  4. 4.
    Tanner, M.W., Sattenspiel, L., Ntaimo, L.: Finding optimal vaccination strategies under parameter uncertainty using stochastic programming. Math. Biosci. 215(2), 144–151 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Watanabe, T., Ellis, H.: Stochastic programming models for air quality management. Comput. Oper. Res. 20(6), 651–663 (1993)zbMATHCrossRefGoogle Scholar
  6. 6.
    Liu, X., Küçükyavuz, S., Luedtke, J.: Decomposition algorithms for two-stage chance-constrained programs. Math. Program. 157(1), 219–243 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Charnes, A., Cooper, W.W.: Deterministic equivalents for optimizing and satisficing under chance constraints. Oper. Res. 11(1), 18–39 (1963)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Lejeune, M.A.: Pattern-based modeling and solution of probabilistically constrained optimization problems. Oper. Res. 60(6), 1356–1372 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Luedtke, J., Ahmed, S.: A sample approximation approach for optimization with probabilistic constraints. SIAM J. Optim. 19(2), 674–699 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Takriti, S., Ahmed, S.: On robust optimization of two-stage systems. Math. Program. 99, 109–126 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Jeroslow, R.G.: Representability in mixed integer programming, I: characterization results. Discrete Appl. Math. 17(3), 223–243 (1987)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Adam, L., Branda, M.: Nonlinear chance constrained problems: optimality conditions, regularization and solvers. J. Optim. Theory Appl. 170(2), 419–436 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Branda, M., Dupačová, J.: Approximation and contamination bounds for probabilistic programs. Ann. Oper. Res. 193(1), 3–19 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Lejeune, M., Margot, F.: Solving chance-constrained optimization problems with stochastic quadratic inequalities. Oper. Res. 64(4), 939–957 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Bonami, P., Lodi, A., Tramontani, A., Wiese, S.: On mathematical programming with indicator constraints. Math. Program. 151(1), 191–223 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Padberg, M., Rinaldi, G.: A branch-and-cut algorithm for the resolution of large-scale symmetric traveling salesman problems. SIAM Rev. 33(1), 60–100 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Luedtke, J.: A branch-and-cut decomposition algorithm for solving chance-constrained mathematical programs with finite support. Math. Program. 146, 219–244 (2014).  https://doi.org/10.1007/s10107-013-0684-6 MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Song, Y., Luedtke, J.R., Küçükyavuz, S.: Chance-constrained binary packing problems. INFORMS J. Comput. 26(4), 735–747 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Gade, D., Küçükyavuz, S., Sen, S.: Decomposition algorithms with parametric Gomory cuts for two-stage stochastic integer programs. Math. Program. 144(1–2), 39–64 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Geoffrion, A.M.: Generalized Benders decomposition. J. Optim. Theory Appl. 10(4), 237–260 (1972)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Duran, M., Grossmann, I.: An outer-approximation algorithm for a class of mixed-integer nonlinear programs. Math. Program. 36, 307–339 (1986)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Baslis, G.C., Bakirtzis, G.A.: Mid-term stochastic scheduling of a price-maker hydro producer with pumped storage. IEEE Trans. Power Syst. 26(4), 1856–1865 (2011)CrossRefGoogle Scholar
  23. 23.
    Carpentier, P.L., Gendreau, M., Bastin, F.: Midterm hydro generation scheduling under uncertainty using the progressive hedging algorithm. Tech. Rep. 2012-35, CIRRELT (2012)Google Scholar
  24. 24.
    Kelman, M.P.N.C.R.: Long-term hydro scheduling based on stochastic models. EPSOM 98, 23–25 (1998)Google Scholar
  25. 25.
    McNeil, A.J., Frey, R., Embrechts, P.: Quantitative Risk Management: Concepts, Techniques and Tools (Revised Edition). Princeton Series in Finance. Princeton University Press, Princeton, NJ (2015)Google Scholar
  26. 26.
    Abhishek, K., Leyffer, S., Linderoth, J.: FilMINT: an outer approximation-based solver for convex mixed-integer nonlinear programs. INFORMS J. Comput. 22(4), 555–567 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Bonami, P., Biegler, L., Conn, A., Cornuéjols, G., Grossmann, I., Laird, C., Lee, J., Lodi, A., Margot, F., Sawaya, N., Wächter, A.: An algorithmic framework for convex Mixed Integer Nonlinear Programs. Discrete Optim. 5, 186–204 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Bertsekas, D.P.: Nonlinear Programming, 2nd edn. Athena Scientific, Belmont (1999)zbMATHGoogle Scholar
  29. 29.
    Bonami, P., Cornuéjols, G., Lodi, A., Margot, F.: A feasibility pump for Mixed Integer Nonlinear Programs. Math. Program. 119(2), 331–352 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Fletcher, R., Leyffer, S.: Solving Mixed Integer Nonlinear Programs by outer approximation. Math. Program. 66, 327–349 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Kelley, J.E.: The cutting-plane method for solving convex programs. J. Soc. Ind. Appl. Math. 8(4), 703–712 (1960)MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    Bloom, J.A.: Solving an electricity generating capacity expansion planning problem by generalized Benders’ decomposition. Oper. Res. 31(1), 84–100 (1983)zbMATHCrossRefGoogle Scholar
  33. 33.
    França, P., Luna, H.: Solving stochastic transportation-location problems by generalized Benders decomposition. Transp. Sci. 16(2), 113–126 (1982)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Günlük, O., Pochet, Y.: Mixing mixed-integer inequalities. Math. Program. 90(3), 429–457 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    Westerlund, T., Skrifvars, H., Harjunkoski, I., Pörn, R.: An extended cutting plane method for a class of non-convex MINLP problems. Comput. Chem. Eng. 22(3), 357–365 (1998)zbMATHCrossRefGoogle Scholar
  36. 36.
    Fischetti, M., Salvagnin, D., Zanette, A.: A note on the selection of Benders’ cuts. Math. Program. 124(1–2), 175–182 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    Carneiro, A., Soares, S., Bond, P.: A large scale of an optimal deterministic hydrothermal scheduling algorithm. IEEE Trans. Power Syst. 5(1), 204–211 (1990)CrossRefGoogle Scholar
  38. 38.
    Andrieu, L., Henrion, R., Römisch, W.: A model for dynamic chance constraints in hydro power reservoir management. Eur. J. Oper. Res. 207(2), 579–589 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    van Ackooij, W., Henrion, R., Möller, A., Zorgati, R.: Joint chance constrained programming for hydro reservoir management. Optim. Eng. 15, 509–531 (2014)MathSciNetzbMATHGoogle Scholar
  40. 40.
    van Ackooij, W.: Decomposition approaches for block-structured chance-constrained programs with application to hydro-thermal unit commitment. Math. Methods Oper. Res. 80(3), 227–253 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  41. 41.
    Wang, Q., Guan, Y., Wang, J.: A chance-constrained two-stage stochastic program for unit commitment with uncertain wind power output. IEEE Trans. Power Syst. 27(1), 206–215 (2012)MathSciNetCrossRefGoogle Scholar
  42. 42.
    Tahanan, M., van Ackooij, W., Frangioni, A., Lacalandra, F.: Large-scale unit commitment under uncertainty. 4OR 13(2), 115–171 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  43. 43.
    Salam, M.S., Nor, K.M., Hamdan, A.R.: Hydrothermal scheduling based Lagrangian relaxation approach to hydrothermal coordination. IEEE Trans. Power Syst. 13(1), 226–235 (1998)CrossRefGoogle Scholar
  44. 44.
    Chang, H.C., Chen, P.H.: Hydrothermal generation scheduling package: a genetic based approach. In: IEEE Proceedings on Generation, Transmission and Distribution, vol. 145. IET (1998)Google Scholar
  45. 45.
    Bacaud, L., Lemarèchal, C., Renaud, A., Sagastizábal, C.: Bundle methods in stochastic optimal power management: a disaggregated approach using preconditioners. Comput. Optim. Appl. 20(3), 227–244 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  46. 46.
    Diniz, A., Costa, F., Pimentel, A.L.G., Xavier, L.N.R., Maceira, M.E.P.: Improvement in the hydro plants production function for the mid-term operation planning model in hydrothermal systems. In: EngOpt 2008—International Conference on Engineering Optimization (2008)Google Scholar
  47. 47.
    Diniz, A.L., Maceira, M.E.P.: A four-dimensional model of hydro generation for the short-term hydrothermal dispatch problem considering head and spillage effects. IEEE Trans. Power Syst. 23(3), 1298–1308 (2008)CrossRefGoogle Scholar
  48. 48.
    Ruz̆ić, S., Rajaković, N., Vuc̆ković, A.: A flexible approach to short-term hydro-thermal coordination. I. Problem formulation and general solution procedure. IEEE Trans. Power Syst. 11(3), 1564–1571 (1996)CrossRefGoogle Scholar
  49. 49.
    Wächter, A., Biegler, L.T.: On the implementation of a primal-dual interior point filter line search algorithm for large-scale nonlinear programming. Math. Program. 106(1), 25–57 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  50. 50.
    Atamtürk, A., Nemhauser, G.L., Savelsbergh, M.W.P.: The mixed vertex packing problem. Math. Program. 89(1), 35–53 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  51. 51.
    Qiu, F., Ahmed, S., Dey, S.S., Wolsey, L.A.: Covering linear programming with violations. INFORMS J. Comput. 26(3), 531–546 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  52. 52.
    Bonami, P., Lee, J.: BONMIN User’s Manual. Tech. rep. IBM Corporation (2007)Google Scholar
  53. 53.
    Belotti, P., Lee, J., Liberti, L., Margot, F., Wächter, A.: Branching and bounds tightening techniques for non-convex MINLP. Optim. Methods Softw. 24(4–5), 597–634 (2008)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2019

Authors and Affiliations

  1. 1.Canada Excellence Research Chair, École Polytechnique de MontréalMontrealCanada
  2. 2.DEI, Università di BolognaBolognaItaly
  3. 3.IBM T.J. WatsonYorktown HeightsUSA
  4. 4.DESTEC, Università di PisaPisaItaly

Personalised recommendations