Advertisement

Fully dynamic bin packing revisited

  • Sebastian BerndtEmail author
  • Klaus Jansen
  • Kim-Manuel Klein
Full Length Paper Series A
  • 129 Downloads

Abstract

We consider the fully dynamic bin packing problem, where items arrive and depart in an online fashion and repacking of previously packed items is allowed. The goal is, of course, to minimize both the number of bins used as well as the amount of repacking. A recently introduced way of measuring the repacking costs at each timestep is the migration factor, defined as the total size of repacked items divided by the size of an arriving or departing item. Concerning the trade-off between number of bins and migration factor, if we wish to achieve an asymptotic competitive ratio of \(1 + \epsilon \) for the number of bins, a relatively simple argument proves a lower bound of \(\Omega ({1}/{\epsilon })\) for the migration factor. We establish a nearly matching upper bound of \(O({1}/{\epsilon }^4 \log {1}/{\epsilon })\) using a new dynamic rounding technique and new ideas to handle small items in a dynamic setting such that no amortization is needed. The running time of our algorithm is polynomial in the number of items nand in \({1}/{\epsilon }\). The previous best trade-off was for an asymptotic competitive ratio of \({5}/{4}\) for the bins (rather than \(1+\epsilon \)) and needed an amortized number of \(O(\log n)\) repackings (while in our scheme the number of repackings is independent of n and non-amortized).

Mathematics Subject Classification

Primary: 68W27 (Online algorithms) Secondary: 68W25 (Approximation algorithms) 

Notes

Acknowledgements

We would like to thank Till Tantau for his valuable comments and suggestions to improve the presentation of the paper. We also thank the anonymous reviewers for their detailed and valuable feedback.

References

  1. 1.
    Balogh, J., Békési, J., Dósa, G., Epstein, L., Levin, A.: A new and improved algorithm for online bin packing. CoRR arXiv:1707.01728 (2017)
  2. 2.
    Balogh, J., Békési, J., Dósa, G., Sgall, J., van Stee, R.: The optimal absolute ratio for online bin packing. In: SODA, pp. 1425–1438. SIAM (2015)Google Scholar
  3. 3.
    Balogh, J., Békési, J., Galambos, G.: New lower bounds for certain classes of bin packing algorithms. In: Workshop on Approximation and Online Algorithms (WAOA), LNCS, vol. 6534, pp. 25–36 (2010)Google Scholar
  4. 4.
    Balogh, J., Békési, J., Galambos, G., Reinelt, G.: Lower bound for the online bin packing problem with restricted repacking. SIAM J. Comput. 38(1), 398–410 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Beling, P., Megiddo, N.: Using fast matrix multiplication to find basic solutions. Theor. Comput. Sci. 205(1–2), 307–316 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Beloglazov, A., Buyya, R.: Energy efficient allocation of virtual machines in cloud data centers. In: 10th IEEE/ACM International Conference on Cluster, Cloud and Grid Computing, CCGrid 2010, pp. 577–578 (2010)Google Scholar
  7. 7.
    Berndt, S., Jansen, K., Klein, K.: Fully dynamic bin packing revisited. In: APPROX-RANDOM, LIPIcs, vol. 40, pp. 135–151. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2015)Google Scholar
  8. 8.
    Bobroff, N., Kochut, A., Beaty, K.: Dynamic placement of virtual machines for managing SLA violations. In: 10th IFIP/IEEE International Symposium on Integrated Network Management, IM 2007, pp. 119–128 (2007)Google Scholar
  9. 9.
    Brown, D.: A lower bound for on-line one-dimensional bin packing algorithms. Technical Report R-864, Coordinated Science Laboratory University of Illinois Urbana (1979)Google Scholar
  10. 10.
    Chan, J., Lam, T., Wong, P.: Dynamic bin packing of unit fractions items. Theor. Comput. Sci. 409(3), 521–529 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Chan, J., Wong, P., Yung, F.: On dynamic bin packing: an improved lower bound and resource augmentation analysis. Algorithmica 53(2), 172–206 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Christensen, H.I., Khan, A., Pokutta, S., Tetali, P.: Approximation and online algorithms for multidimensional bin packing: a survey. Comput. Sci. Rev. 24, 63–79 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Coffman, E., Garey, M., Johnson, D.: Dynamic bin packing. SIAM J. Comput. 12(2), 227–258 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Daudjee, K., Kamali, S., López-Ortiz, A.: On the online fault-tolerant server consolidation problem. In: 26th ACM Symposium on Parallelism in Algorithms and Architectures, SPAA ’14, pp. 12–21 (2014)Google Scholar
  15. 15.
    Eisemann, K.: The trim problem. Manag. Sci. 3(3), 279–284 (1957)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Epstein, L., Levin, A.: A robust APTAS for the classical bin packing problem. Math. Program. 119(1), 33–49 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Epstein, L., Levin, A.: Robust approximation schemes for cube packing. SIAM J. Optim. 23(2), 1310–1343 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Feldkord, B., Feldotto, M., Riechers, S.: A tight approximation for fully dynamic bin packing without bundling. In: ICALP (2018)Google Scholar
  19. 19.
    Gambosi, G., Postiglione, A., Talamo, M.: Algorithms for the relaxed online bin-packing model. J. Comput. 30(5), 1532–1551 (2000)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Gupta, A., Guruganesh, G., Kumar, A., Wajc, D.: Fully-dynamic bin packing with limited repacking. In: ICALP (2018)Google Scholar
  21. 21.
    Heydrich, S., van Stee, R.: Beating the harmonic lower bound for online bin packing. In: ICALP, LIPIcs, vol. 55, pp. 41:1–41:14. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2016)Google Scholar
  22. 22.
    Ivković, Z., Lloyd, E.: Partially dynamic bin packing can be solved within \(1 + \epsilon \) in (amortized) polylogarithmic time. Inf. Process. Lett. 63(1), 45–50 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Ivković, Z., Lloyd, E.: Fully dynamic algorithms for bin packing: being (mostly) myopic helps. SIAM J. Comput. 28(2), 574–611 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Ivković, Z., Lloyd, E.: Fully dynamic bin packing. In: Fundamental Problems in Computing, pp. 407–434. Springer (2009)Google Scholar
  25. 25.
    Jansen, K., Klein, K.: A robust AFPTAS for online bin packing with polynomial migration. In: International Colloquium on Automata, Languages, and Programming (ICALP), pp. 589–600 (2013)Google Scholar
  26. 26.
    Jansen, K., Klein, K., Kosche, M., Ladewig, L.: Online strip packing with polynomial migration. In: APPROX-RANDOM, LIPIcs, vol. 81, pp. 13:1–13:18. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2017)Google Scholar
  27. 27.
    Jansen, K., Kraft, S.E.J.: A faster FPTAS for the unbounded knapsack problem. In: IWOCA, Lecture Notes in Computer Science, vol. 9538, pp. 274–286. Springer (2015)Google Scholar
  28. 28.
    Johnson, D.: Fast algorithms for bin packing. J. Comput. Syst. Sci. 8(3), 272–314 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Johnson, D., Demers, A., Ullman, J., Garey, M., Graham, R.: Worst-case performance bounds for simple one-dimensional packing algorithms. SIAM J. Comput. 3(4), 299–325 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Jung, G., Joshi, K., Hiltunen, M., Schlichting, R., Pu, C.: Generating adaptation policies for multi-tier applications in consolidated server environments. In: 2008 International Conference on Autonomic Computing, ICAC 2008, 2–6 June 2008, Chicago, Illinois, USA, pp. 23–32 (2008)Google Scholar
  31. 31.
    Jung, G., Joshi, K., Hiltunen, M., Schlichting, R., Pu, C.: A cost-sensitive adaptation engine for server consolidation of multitier applications. In: Proceedings of 10th International Middleware Conference on Middleware 2009, ACM/IFIP/USENIX, pp. 163–183 (2009)Google Scholar
  32. 32.
    Karmarkar, N., Karp, R.: An efficient approximation scheme for the one-dimensional bin-packing problem. In: 23rd Annual Symposium on Foundations of Computer Science (FOCS), pp. 312–320. IEEE Computer Society (1982)Google Scholar
  33. 33.
    Lee, C., Lee, D.: A simple on-line bin-packing algorithm. J. ACM (JACM) 32(3), 562–572 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Li, Y., Tang, X., Cai, W.: On dynamic bin packing for resource allocation in the cloud. In: 26th ACM Symposium on Parallelism in Algorithms and Architectures, SPAA ’14, pp. 2–11 (2014)Google Scholar
  35. 35.
    Liang, F.: A lower bound for on-line bin packing. Inf. Process. Lett. 10(2), 76–79 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Park, J., Savagaonkar, U.R., Chong, E., Siegel, H., Jones, S.: Efficient resource allocation for QoS channels in MF-TDMA satellite systems. In: Proceedings of Conference on 21st Century Military Communications, MILCOM 2000, vol. 2, pp. 645–649. IEEE (2000)Google Scholar
  37. 37.
    Sanders, P., Sivadasan, N., Skutella, M.: Online scheduling with bounded migration. Math. Oper. Res. 34(2), 481–498 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Seiden, S.: On the online bin packing problem. J. ACM 49(5), 640–671 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Skutella, M., Verschae, J.: Robust polynomial-time approximation schemes for parallel machine scheduling with job arrivals and departures. Math. Oper. Res. 41(3), 991–1021 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Srikantaiah, S., Kansal, A., Zhao, F.: Energy aware consolidation for cloud computing. In: Proceedings of the 2008 Conference on Power Aware Computing and Systems, HotPower’08, p. 10 (2008)Google Scholar
  41. 41.
    Stolyar, A.: An infinite server system with general packing constraints. Oper. Res. 61(5), 1200–1217 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Stolyar, A., Zhong, Y.: A large-scale service system with packing constraints: minimizing the number of occupied servers. In: Proceedings of the ACM SIGMETRICS/International Conference on Measurement and Modeling of Computer Systems, pp. 41–52. ACM (2013)Google Scholar
  43. 43.
    Ullman, J.: The Performance of a Memory Allocation Algorithm. Technical Report. Princeton University (1971)Google Scholar
  44. 44.
    de la Fernandez Vega, W., Lueker, G.: Bin packing can be solved within \(1+ \epsilon \) in linear time. Combinatorica 1(4), 349–355 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Verma, A., Ahuja, P., Neogi, A.: pMapper: power and migration cost aware application placement in virtualized systems. In: Proceedings of the 9th International Middleware Conference on Middleware 2008, ACM/IFIP/USENIX, pp. 243–264 (2008)Google Scholar
  46. 46.
    Vliet, A.: An improved lower bound for on-line bin packing algorithms. Inf. Process. Lett. 43(5), 277–284 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    Yao, A.: New algorithms for bin packing. J. ACM (JACM) 27(2), 207–227 (1980)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2018

Authors and Affiliations

  1. 1.Kiel UniversityKielGermany
  2. 2.EPFLLausanneSwitzerland

Personalised recommendations