Advertisement

Mathematical Programming

, Volume 177, Issue 1–2, pp 55–83 | Cite as

The ordered k-median problem: surrogate models and approximation algorithms

  • Ali Aouad
  • Danny SegevEmail author
Full Length Paper Series A
  • 431 Downloads

Abstract

In the last two decades, a steady stream of research has been devoted to studying various computational aspects of the ordered k-median problem, which subsumes traditional facility location problems (such as median, center, p-centrum, etc.) through a unified modeling approach. Given a finite metric space, the objective is to locate k facilities in order to minimize the ordered median cost function. In its general form, this function penalizes the coverage distance of each vertex by a multiplicative weight, depending on its ranking (or percentile) in the ordered list of all coverage distances. While antecedent literature has focused on mathematical properties of ordered median functions, integer programming methods, various heuristics, and special cases, this problem was not studied thus far through the lens of approximation algorithms. In particular, even on simple network topologies, such as trees or line graphs, obtaining non-trivial approximation guarantees is an open question. The main contribution of this paper is to devise the first provably-good approximation algorithms for the ordered k-median problem. We develop a novel approach that relies primarily on a surrogate model, where the ordered median function is replaced by a simplified ranking-invariant functional form, via efficient enumeration. Surprisingly, while this surrogate model is \(\varOmega ( n^{ \varOmega (1) } )\)-hard to approximate on general metrics, we obtain an \(O(\log n)\)-approximation for our original problem by employing local search methods on a smooth variant of the surrogate function. In addition, an improved guarantee of \(2+\epsilon \) is obtained on tree metrics by optimally solving the surrogate model through dynamic programming. Finally, we show that the latter optimality gap is tight up to an \(O(\epsilon )\) term.

Keywords

Location theory Approximation algorithms Surrogate model Local search 

Mathematics Subject Classification

68W25 Approximation Algorithms 90B80 Discrete location and assignment 

Notes

Acknowledgements

We would like to thank Mathematical Programming’s review team for a host of technical and editorial comments, that have assisted us in improving the presentation of our results. In particular, we are grateful to an anonymous reviewer, who proposed a direct and elegant way to derive Theorem 3, substituting a more involved proof that appeared in an early version of this paper.

Supplementary material

References

  1. 1.
    Abraham, I., Bartal, Y., Neiman, O.: Nearly tight low stretch spanning trees. In: Proceedings of the 49th IEEE Annual Symposium on Foundations of Computer Science, pp. 781–790 (2008)Google Scholar
  2. 2.
    Alon, N., Karp, R.M., Peleg, D., West, D.: A graph-theoretic game and its application to the \(k\)-server problem. SIAM J. Comput. 24(1), 78–100 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for \(k\)-median and facility location problems. SIAM J. Comput. 33(3), 544–562 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Bartal, Y.: Probabilistic approximations of metric spaces and its algorithmic applications. In: Proceedings of the 37th IEEE Annual Symposium on Foundations of Computer Science, pp. 184–193 (1996)Google Scholar
  5. 5.
    Bartal, Y.: On approximating arbitrary metrics by tree metrics. In: Proceedings of the 30th Annual ACM Symposium on the Theory of Computing, pp. 161–168 (1998)Google Scholar
  6. 6.
    Bertsimas, D., Mazumder, R.: Least quantile regression via modern optimization. Ann. Stat. 42(6), 2494–2525 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Bertsimas, D., Sim, M.: Robust discrete optimization and network flows. Math. Program. 98(1–3), 49–71 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Bertsimas, D., Weismantel, R.: Optimization Over Integers. Dynamic Ideas, Belmont (2005)Google Scholar
  9. 9.
    Blanco, V., Puerto, J., Salmerón, R.: A general framework for locating hyperplanes to fitting set of points. (2015). arXiv preprint arXiv:1505.03451
  10. 10.
    Boland, N., Domínguez-Marín, P., Nickel, S., Puerto, J.: Exact procedures for solving the discrete ordered median problem. Comput. Oper. Res. 33(11), 3270–3300 (2006)zbMATHCrossRefGoogle Scholar
  11. 11.
    Bradley, P.S., Fayyad, U.M., Mangasarian, O.L.: Mathematical programming for data mining: formulations and challenges. INFORMS J. Comput. 11(3), 217–238 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for \(k\)-median and positive correlation in budgeted optimization. ACM Trans. Algorithms 13(2), 23:1–23:31 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Byrka, J., Sornat, K., Spoerhase, J.: Constant-factor approximation for ordered \(k\)-median, 2017. In:Proceedings of the 50th Annual ACM Symposium on the Theory of Computing (to appear). Available as arXiv preprint arXiv:1711.01972
  14. 14.
    Chakrabarty, D., Swamy, C.: Interpolating between \(k\)-median and \(k\)-center: Approximation algorithms for ordered \(k\)-median. (2017). arXiv preprint arXiv:1711.08715
  15. 15.
    Charikar, M., Guha, S.: Improved combinatorial algorithms for facility location problems. SIAM J. Comput. 34(4), 803–824 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Charikar, M., Guha, S., Tardos, É., Shmoys, D. B.: A constant-factor approximation algorithm for the \(k\)-median problem. In: Proceedings of the 31st Annual ACM Symposium on Theory of Computing, pp. 1–10 (1999)Google Scholar
  17. 17.
    Domínguez-Marín, P., Nickel, S., Hansen, P., Mladenović, N.: Heuristic procedures for solving the discrete ordered median problem. Ann. Oper. Res. 136(1), 145–173 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Drezner, Z., Hamacher, H.W.: Facility Location: Applications and Theory. Springer Science & Business Media, Berlin (2004)zbMATHGoogle Scholar
  19. 19.
    Drezner, Z., Nickel, S.: Constructing a DC decomposition for ordered median problems. J. Global Optim. 45(2), 187–201 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Drezner, Z., Nickel, S.: Solving the ordered one-median problem in the plane. Eur. J. Oper. Res. 195(1), 46–61 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Elkin, M., Emek, Y., Spielman, D.A., Teng, S.-H.: Lower-stretch spanning trees. SIAM J. Comput. 38(2), 608–628 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Espejo, I., Rodríguez-Chía, A.M., Valero, C.: Convex ordered median problem with \(\ell _p\)-norms. Comput. Oper. Res. 36(7), 2250–2262 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Fakcharoenphol, J., Rao, S., Talwar, K.: A tight bound on approximating arbitrary metrics by tree metrics. J. Comput. Syst. Sci. 69(3), 485–497 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Feige, U.: A threshold of \(\ln n\) for approximating set cover. J. ACM 45(4), 634–652 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Fernández, E., Pozo, M.A., Puerto, J., Scozzari, A.: Ordered weighted average optimization in multiobjective spanning tree problem. Eur. J. Oper. Res. 260(3), 886–903 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Gassner, E.: An inverse approach to convex ordered median problems in trees. J. Combin. Optim. 23(2), 261–273 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Gupta, A., Tangwongsan, K.: Simpler analyses of local search algorithms for facility location. arXiv preprint arXiv:0809.2554 (2008)
  28. 28.
    Hochbaum, D.S., Shmoys, D.B.: A best possible heuristic for the \(k\)-center problem. Math. Oper. Res. 10(2), 180–184 (1985)MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Appl. Math. 1(3), 209–215 (1979)MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Jain, K., Mahdian, M., Saberi, A.: A new greedy approach for facility location problems. In: Proceedings on the 34th Annual ACM Symposium on Theory of Computing, pp. 731–740 (2002)Google Scholar
  31. 31.
    Jain, K., Vazirani, V.V.: Approximation algorithms for metric facility location and \(k\)-median problems using the primal-dual schema and lagrangian relaxation. J. ACM 48(2), 274–296 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    Kalcsics, J., Nickel, S., Puerto, J.: Multifacility ordered median problems on networks: a further analysis. Networks 41(1), 1–12 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    Kalcsics, J., Nickel, S., Puerto, J., Tamir, A.: Algorithmic results for ordered median problems. Oper. Res. Lett. 30(3), 149–158 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    Korupolu, M.R., Plaxton, C.G., Rajaraman, R.: Analysis of a local search heuristic for facility location problems. J. Algorithms 37(1), 146–188 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    Laporte, G., Nickel, S., da Gama, F.S.: Location Science. Springer, Berlin (2015)zbMATHCrossRefGoogle Scholar
  36. 36.
    Lei, T.L., Church, R.L.: Vector assignment ordered median problem: a unified median problem. Int. Region. Sci. Rev. 37(2), 194–224 (2014)CrossRefGoogle Scholar
  37. 37.
    Li, S., Svensson, O.: Approximating \(k\)-median via pseudo-approximation. SIAM J. Comput. 45(2), 530–547 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    Liberty, E., Sviridenko, M.: Greedy minimization of weakly supermodular set functions. In: Proceedings of the 20th International Workshop on Approximation Algorithms for Combinatorial Optimization Problems, pp. 19:1–19:11 (2017)Google Scholar
  39. 39.
    Lin, J.-H., Vitter, J.S.: Approximation algorithms for geometric median problems. Inf. Process. Lett. 44(5), 245–249 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    Lin, J.-H., Vitter, J.S.: e-approximations with minimum packing constraint violation. In: Proceedings of the 24th Annual ACM Symposium on Theory of Computing, pp. 771–782 (1992)Google Scholar
  41. 41.
    Lozano, A.J., Plastria, F.: The ordered median Euclidean straight-line location problem. Stud. Locat. Anal. 17, 29–43 (2009)MathSciNetzbMATHGoogle Scholar
  42. 42.
    Mendel, M., Naor, A.: Maximum gradient embeddings and monotone clustering. Combinatorica 30(5), 581–615 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  43. 43.
    Mirchandani, P .B., Francis, R .L.: Discrete Location Theory. Wiley, New York (1990)zbMATHGoogle Scholar
  44. 44.
    Nickel, S.: Discrete ordered weber problems. In: Operations Research Proceedings: Selected Papers of the Symposium on Operations Research (OR 2000), pp. 71–76 (2001)Google Scholar
  45. 45.
    Nickel, S., Puerto, J.: A unified approach to network location problems. Networks 34(4), 283–290 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  46. 46.
    Nickel, S., Puerto, J.: Location Theory: A Unified Approach. Springer Science & Business Media, Berlin (2005)zbMATHGoogle Scholar
  47. 47.
    Plesník, J.: On the computational complexity of centers locating in a graph. Aplikace matematiky 25(6), 445–452 (1980)MathSciNetzbMATHGoogle Scholar
  48. 48.
    Puerto, J., Fernández, F.R.: Geometrical properties of the symmetrical single facility location problem. J. Nonlinear Convex Anal. 1(3), 321–342 (2000)MathSciNetzbMATHGoogle Scholar
  49. 49.
    Puerto, J., Pérez-Brito, D., García-González, C.G.: A modified variable neighborhood search for the discrete ordered median problem. Eur. J. Oper. Res. 234(1), 61–76 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  50. 50.
    Puerto, J., Ramos, A.B., Rodríguez-Chía, A.M.: Single-allocation ordered median hub location problems. Comput. Oper. Res. 38(2), 559–570 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  51. 51.
    Puerto, J., Ramos, A.B., Rodríguez-Chía, A.M.: A specialized branch & bound & cut for single-allocation ordered median hub location problems. Discrete Appl. Math. 161(16), 2624–2646 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  52. 52.
    Puerto, J., Rodríguez-Chía, A.M.: On the exponential cardinality of FDS for the ordered \(p\)-median problem. Oper. Res. Lett. 33(6), 641–651 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  53. 53.
    Puerto, J., Rodríguez-Chía, A.M., Tamir, A.: Minimax regret single-facility ordered median location problems on networks. INFORMS J. Comput. 21(1), 77–87 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  54. 54.
    Puerto, J., Rodríguez-Chía, A.M., Tamir, A.: Revisiting \(k\)-sum optimization. Math. Program. 165(2), 579–604 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  55. 55.
    Puerto, J., Tamir, A.: Locating tree-shaped facilities using the ordered median objective. Math. Program. 102(2), 313–338 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  56. 56.
    Rodríguez-Chía, A.M., Puerto, J., Pérez-Brito, D., Moreno, J.A.: The \(p\)-facility ordered median problem on networks. Top 13(1), 105–126 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  57. 57.
    Stanimirović, Z., Kratica, J., Dugošija, D.: Genetic algorithms for solving the discrete ordered median problem. Eur. J. Oper. Res. 182(3), 983–1001 (2007)zbMATHCrossRefGoogle Scholar
  58. 58.
    Tamir, A.: The \(k\)-centrum multi-facility location problem. Discrete Appl. Math. 109(3), 293–307 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  59. 59.
    Tamir, A., Pérez-Brito, D., Moreno-Pérez, J.A.: A polynomial algorithm for the \(p\)-centdian problem on a tree. Networks 32(4), 255–262 (1998)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2018

Authors and Affiliations

  1. 1.London Business SchoolLondonUK
  2. 2.Department of StatisticsUniversity of HaifaHaifaIsrael

Personalised recommendations