Advertisement

Balas formulation for the union of polytopes is optimal

  • Michele Conforti
  • Marco Di Summa
  • Yuri FaenzaEmail author
Full Length Paper Series A
  • 35 Downloads

Abstract

A celebrated theorem of Balas gives a linear mixed-integer formulation for the union of two nonempty polytopes whose relaxation gives the convex hull of this union. The number of inequalities in Balas formulation is linear in the number of inequalities that describe the two polytopes and the number of variables is doubled. In this paper we show that this is best possible: in every dimension there exist two nonempty polytopes such that if a formulation for the convex hull of their union has a number of inequalities that is polynomial in the number of inequalities that describe the two polytopes, then the number of additional variables is at least linear in the dimension of the polytopes. We then show that this result essentially carries over if one wants to approximate the convex hull of the union of two polytopes and also in the more restrictive setting of lift-and-project.

Mathematics Subject Classification

Primary 90C11 Secondary 52B05 

Notes

Acknowledgements

We are grateful to Volker Kaibel and Stefan Weltge for helpful discussions and suggestions regarding the present work. We thank two anonymous referees for their suggestions and pointers to relevant papers from the literature.

References

  1. 1.
    Chan, S.O., Lee, J.R., Raghavendra, P., Steurer, D.: Approximate constraint satisfaction requires large LP relaxations. J. ACM 63, 34:1–34:22 (2016)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Fiorini, S., Massar, S., Pokutta, S., Tiwary, H.R., de Wolf, R.: Exponential lower bounds for polytopes in combinatorial optimization. J. ACM 62, 17:1–17:23 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Kaibel, V., Pashkovich, K.: Constructing extended formulations from reflection relations. In: Proceedings of 15th IPCO, pp. 287–300 (2011)Google Scholar
  4. 4.
    Rothvoss, T.: The matching polytope has exponential extension complexity. In: Proceedings of 46th STOC, pp. 263–272 (2014)Google Scholar
  5. 5.
    Vielma, J.P.: Small and strong formulations for unions of convex sets from the Cayley embedding. Math. Program. (2018) (To appear)Google Scholar
  6. 6.
    Van Vyve, M., Wolsey, L.: Approximate extended formulations. Math. Program. 105, 501–522 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Balas, E.: Disjunctive programming: properties of the convex hull of feasible points. Discrete Appl. Math. 89, 3–44 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Conforti, M., Cornuéjols, G., Zambelli, G.: Integer Programming. Springer, Berlin (2014)zbMATHGoogle Scholar
  9. 9.
    Weltge, S.: Sizes of linear descriptions in combinatorial optimization. Ph.D. dissertation, Otto-von-Guericke-Universität Magdeburg (2016)Google Scholar
  10. 10.
    Conforti, M., Cornuéjols, G., Zambelli, G.: Extended formulations in combinatorial optimization. 4OR 8, 1–48 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Kaibel, V.: Extended formulations in combinatorial optimization. Optima 85, 2–7 (2011)Google Scholar
  12. 12.
    Jeroslow, R.G., Lowe, J.K.: Modelling with integer variables. Math. Program. Stud. 22, 167–184 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Basu, A., Martin, K., Ryan, C., Wang, G.: Mixed-integer linear representability, disjunctions, and variable elimination. In: Proceedings of 19th IPCO, pp. 51–62 (2017)Google Scholar
  14. 14.
    Vielma, J.P.: Mixed integer linear programming formulation techniques. SIAM Rev. 57, 3–57 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Huchette, J., Vielma, J.P.: A combinatorial approach for small and strong formulations of disjunctive constraints. Math. Oper. Res. (2016) (To appear)Google Scholar
  16. 16.
    Vielma, J.P.: Embedding formulations and complexity for unions of polyhedra. Manag. Sci. (2017).  https://doi.org/10.1287/mnsc.2017.2856
  17. 17.
    Bader, J., Hildebrand, R., Weismantel, R., Zenklusen, R.: Mixed integer reformulations of integer programs and the affine TU-dimension of a matrix. Math. Program. 169, 565–584 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Hildebrand, R., Weismantel, R., Zenklusen, R.: Extension complexity lower bounds for mixed-integer extended formulations. In: Proceedings of SODA 2017, pp. 2342–2350 (2017)Google Scholar
  19. 19.
    Ziegler, G.: Lectures on Polytopes. Springer, Berlin (1998)zbMATHGoogle Scholar
  20. 20.
    Grünbaum, B.: Convex Polytopes. Springer, Berlin (1967)zbMATHGoogle Scholar
  21. 21.
    Huber, B., Rambau, J., Santos, F.: The Cayley trick, lifting subdibisions, and the Bohne-Dress theorem on zonotopal tilings. J. Eur. Math. Soc. 2, 179–198 (2000)CrossRefzbMATHGoogle Scholar
  22. 22.
    Adiprasito, K., Sanyal, R.: Relative Stanley–Reisner theory and upper bound theorems for Minkowski sums. Publ. Math. de l’IHS 124, 99–163 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Karavelas, M., Konaxis, C., Tzanaki, E.: The maximum number of faces of the Minkowski sum of three convex polytopes. J. Comput. Geom. 6(1), 21–74 (2015)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Weibel, C.: Minkowski sums of polytopes: combinatorics and computation. Ph.D. dissertation, École polytechnique fédérale de Lausanne (2007)Google Scholar
  25. 25.
    Faenza, Y., Sanità, L.: On the existence of compact epsilon-approximation for the knapsack polytope in the original space. Oper. Res. Lett. 43, 339–342 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Kaibel, V., Weltge, S.: Lower bounds on the sizes of integer programs without additional variables. Math. Program. 154, 407–425 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Jukna, S.: Extremal Combinatorics—with Applications in Computer Science. Springer, Berlin (2011)zbMATHGoogle Scholar
  28. 28.
    Balas, E., Ceria, S., Cornuéjols, G.: A lift-and-project cutting plane algorithm for mixed 0–1 programs. Math. Program. 58, 295–324 (1993)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2019

Authors and Affiliations

  1. 1.Dipartimento di Matematica “Tullio Levi-Civita”Università degli studi di PadovaPaduaItaly
  2. 2.IEORColumbia UniversityNew YorkUSA

Personalised recommendations