Mathematical Programming

, Volume 173, Issue 1–2, pp 353–391

# Convexification of generalized network flow problem

• Somayeh Sojoudi
• Salar Fattahi
Full Length Paper Series A

## Abstract

This paper is concerned with the minimum-cost flow problem over an arbitrary flow network. In this problem, each node is associated with some possibly unknown injection and each line has two unknown flows at its ends that are related to each other via a nonlinear function. Moreover, all injections and flows must satisfy certain box constraints. This problem, named generalized network flow (GNF), is highly non-convex due to its nonlinear equality constraints. Under the assumption of monotonicity and convexity of the flow and cost functions, a convex relaxation is proposed, which is shown to always obtain globally optimal injections. This relaxation may fail to find optimal flows because the mapping from injections to flows is not unique in general. We show that the proposed relaxation, named convexified GNF (CGNF), obtains a globally optimal flow vector if the optimal injection vector is a Pareto point. More generally, the network can be decomposed into two subgraphs such that the lines between the subgraphs are congested at optimality and that CGNF finds correct optimal flows over all lines of one of these subgraphs. We also fully characterize the set of all globally optimal flow vectors, based on the optimal injection vector found via CGNF. In particular, we show that this solution set is a subset of the boundary of a convex set, and may include an exponential number of disconnected components. A primary application of this work is in optimization over electrical power networks.

## Keywords

Network flow Lossy networks Convex optimization Convex relaxation Electrical power networks Optimal power flow

## Mathematics Subject Classification

90C26 90B10 90C90

## References

1. 1.
Goldberg, A.V., Tardos, E., Tarjan, R.E.: Network flow algorithms. In: Korte, B., Lovasz, L., Promel, H.J., Schrijver, A. (eds.) Flows, Paths and VLSI, pp. 101–164. Springer, Berlin (1990)Google Scholar
2. 2.
Jewell, W.S.: Optimal flow through networks with gains. Oper. Res. 10, 476–499 (1962)
3. 3.
Ford, L.R., Fulkerson, D.R.: Flows in Networks. Princeton University Press, Princeton (1962)
4. 4.
Klein, M.: A primal method for minimal cost flows with applications to the assignment and transportation problems. Manag. Sci. 14, 205–220 (1967)
5. 5.
Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms, and Applications. Prentice-Hall, Upper Saddle River (1993)
6. 6.
Bertsimas, D., Sim, M.: Robust discrete optimization and network flows. Math. Program. 98, 49–71 (2003)
7. 7.
Bertsimas, D., Stock-Paterson, S.: The traffic flow management rerouting problem in air traffic control: a dynamic network flow approach. Transp. Sci. 34, 239–255 (2000)
8. 8.
Bazaraa, M.S., Jarvis, J.J., Sherali, H.D.: Linear Programming and Network Flows. Wiley, Hoboken, NJ (1990)
9. 9.
Edmonds, J., Karp, R.M.: Theoretical improvements in algorithmic efficiency for network flow problems. J. ACM 19, 248–264 (1972)
10. 10.
Nygard, K.E., Chandler, P.R., Pachter, M.: Dynamic network flow optimization models for air vehicle resource allocation. In: American Control Conference (2001)Google Scholar
11. 11.
Goldfarb, D., Hao, J.: Polynomial-time primal simplex algorithms for the minimum cost network flow problem. Algorithmica 8, 145–160 (1992)
12. 12.
Bienstock, D., Chopra, S., Gunluk, O., Tsai, C.Y.: Minimum cost capacity installation for multicommodity network flows. Math. Program. 81, 177–199 (1998)
13. 13.
Brannlund, H., Bubenko, J.A., Sjelvgren, D., Andersson, N.: Optimal short term operation planning of a large hydrothermal power system based on a nonlinear network flow concept. IEEE Trans. Power Syst. 1, 75–81 (1986)Google Scholar
14. 14.
Goffin, J.L., Gondzio, J., Sarkissian, R., Vial, J.P.: Solving nonlinear multicommodity flow problems by the analytic center cutting plane method. Math. Program. 76, 131–154 (1996)
15. 15.
Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)
16. 16.
Kraning, M., Chu, E., Lavaei, J., Boyd, S.: Dynamic network energy management via proximal message passing. Found. Trends Optim. 1(2), 1–54 (2013)Google Scholar
17. 17.
Araposthatis, A., Sastry, S., Varaiya, P.: Analysis of power-flow equation. Int. J. Electr. Power Energy Syst. 3, 115–126 (1981)Google Scholar
18. 18.
Hiskens, I.A., Davy, R.J.: Exploring the power flow solution space boundary. IEEE Trans. Power Syst. 16(3), 389–395 (2001)Google Scholar
19. 19.
Sojoudi, S., Lavaei, J.: Physics of power networks makes hard optimization problems easy to solve. In: IEEE Power & Energy Society General Meeting (2012)Google Scholar
20. 20.
Carpentier, J.: Contribution to the economic dispatch problem. Bull. Soc. Fr. Electr. 3, 431–447 (1962)Google Scholar
21. 21.
Dommel, H.W., Tinney, W.F.: Optimal power flow solutions. IEEE Trans. Power Appar. Syst. 10, 1866–1876 (1968)Google Scholar
22. 22.
Momoh, J.A., El-Hawary, M.E., Adapa, R.: A review of selected optimal power flow literature to 1993. Part I: nonlinear and quadratic programming approaches. IEEE Trans. Power Syst. 14, 96–104 (1999)Google Scholar
23. 23.
Momoh, J.A., El-Hawary, M.E., Adapa, R.: A review of selected optimal power flow literature to 1993. Part II: Newton, linear programming and interior point methods. IEEE Trans. Power Syst. 14, 105–111 (1999)Google Scholar
24. 24.
Overbye, T.J., Cheng, X., Sun, Y.: A comparison of the AC and DC power flow models for LMP calculations. In: Proceedings of the 37th Hawaii International Conference on System Sciences (2004)Google Scholar
25. 25.
Baldick, R.: Applied Optimization: Formulation and Algorithms for Engineering Systems. Cambridge University Press, Cambridge (2006)
26. 26.
Pandya, K.S., Joshi, S.K.: A survey of optimal power flow methods. J. Theor. Appl. Inf. Technol. 4, 450–458 (2008)Google Scholar
27. 27.
Jabr, R.A.: Optimal power flow using an extended conic quadratic formulation. IEEE Trans. Power Syst. 23(3), 1000–1008 (2008)Google Scholar
28. 28.
Makarov, Y.V., Dong, Z.Y., Hill, D.J.: On convexity of power flow feasibility boundary. IEEE Trans. Power Syst. 23, 811–813 (2008)Google Scholar
29. 29.
Lavaei, J., Low, S.H.: Zero duality gap in optimal power flow problem. IEEE Trans. Power Syst. 27(1), 92–107 (2012)Google Scholar
30. 30.
Madani, R., Sojoudi, S., Lavaei, J.: Convex relaxation for optimal power flow problem: Mesh networks. IEEE Trans. Power Syst. 30(1), 199–211 (2015)Google Scholar
31. 31.
Madani, R., Ashraphijuo, M., Lavaei, J.: Promises of conic relaxation for contingency-constrained optimal power flow problem. IEEE Trans. Power Syst. 31(2), 1297–1307 (2016)Google Scholar
32. 32.
Sojoudi, S., Lavaei, J.: Exactness of semidefinite relaxations for nonlinear optimization problems with underlying graph structure. SIAM J. Optim. 24(4), 1746–1778 (2014)
33. 33.
Lesieutre, B., Molzahn, D., Borden, A., DeMarco, C.L.: Examining the limits of the application of semidefinite programming to power flow problems. In: 49th Annual Allerton Conference (2011)Google Scholar
34. 34.
Bose, S., Gayme, D.F., Low, S., Chandy, M.K.: Optimal power flow over tree networks. In: Proceedings of the Forty-Ninth Annual Allerton Conference (2011)Google Scholar
35. 35.
Zhang, B., Tse, D.: Geometry of injection regions of power networks. IEEE Trans. Power Syst. 28(2), 788–797 (2013)Google Scholar
36. 36.
Lavaei, J., Zhang, B., Tse, D.: Geometry of power flows in tree networks. In: IEEE Power & Energy Society General Meeting (2012)Google Scholar
37. 37.
Lavaei, J., Tse, D., Zhang, B.: Geometry of power flows and optimization in distribution networks. IEEE Trans. Power Syst. 29(2), 572–583 (2014)Google Scholar
38. 38.
Lavaei, J., Low, S.H.: Convexification of optimal power flow problem. In: 48th Annual Allerton Conference (2010)Google Scholar
39. 39.
Lam, A.Y.S., Zhang, B., Dominguez-Garcia, A., Tse, D.: An optimal and distributed method for voltage regulation in power distribution systems. IEEE Trans. Power Syst. 30(4), 1714–1726 (2015)Google Scholar
40. 40.
Gayme, D., Topcu, U.: Optimal power flow with large-scale storage integration. IEEE Trans. Power Syst. 28(2), 709–717 (2013)Google Scholar
41. 41.
Weng, Y., Li, Q., Negi, R., Ilic, M.: Semidefinite programming for power system state estimation. In: IEEE Power & Energy Society General Meeting (2012)Google Scholar
42. 42.
Madani, R., Lavaei, J., Baldick, R.: Convexification of power flow equations for power systems in presence of noisy measurements (2016). http://ieor.berkeley.edu/~lavaei/SE_J_2016.pdf
43. 43.
Kekatos, V., Giannakis, G.B., Wollenberg, B.: Optimal placement of phasor measurement units via convex relaxation. IEEE Trans. Power Syst. 27(3), 1521–1530 (2012)Google Scholar
44. 44.
Molzahn, D.K., Lesieutre, B.C., DeMarco, C.L.: A sufficient condition for power flow insolvability with applications to voltage stability margins. IEEE Trans. Power Syst. 28(3), 2592–2601 (2013)Google Scholar
45. 45.
Sojoudi, S., Low, S.H.: Optimal charging of plug-in hybrid electric vehicles in smart grids. In: IEEE Power & Energy Society General Meeting (2011)Google Scholar
46. 46.
Lavaei, J.: Zero duality gap for classical OPF problem convexifies fundamental nonlinear power problems. In: American Control Conference (2011)Google Scholar
47. 47.
Lavaei, J., Sojoudi, S.: Competitive equilibria in electricity markets with nonlinearities. In: American Control Conference (2012)Google Scholar
48. 48.
Hijazi, H., Coffrin, C., Hentenryck, P.V.: Convex quadratic relaxations for mixed-integer nonlinear programs in power systems. Mathematical Programming Computation, pp. 1–47 (2013)Google Scholar
49. 49.
Kocuk, B., Dey, S.S., Sun, X.A.: Strong SOCP relaxations for the optimal power flow problem. Oper. Res. 64(6), 1177–1196 (2016)
50. 50.
Fattahi, S., Ashraphijuo, M., Lavaei, J., Atamturk, A.: Conic relaxations of the unit commitment problem. Energy 134, 1079–1095 (2017)Google Scholar
51. 51.
O’Neill, R.P., Baldick, R., Helman, U., Rothkopf, M.H., Stewart, W.: Dispatchable transmission in rto markets. IEEE Trans. Power Syst. 20(1), 171–179 (2005)Google Scholar
52. 52.
Josz, C., Maeght, J., Panciatici, P., Gilbert, J.C.: Application of the moment-SOS approach to global optimization of the OPF problem. IEEE Trans. Power Syst. 30(1), 463–470 (2015)Google Scholar
53. 53.
Molzahn, D., Josz, C., Hiskens, I., Panciatici, P.: Solution of optimal power flow problems using moment relaxations augmented with objective function penalization. In: IEEE Conference on Decision and Control (CDC), pp. 31–38 (2015)Google Scholar
54. 54.
Lasserre, J.B.: Global optimization with polynomials and the problem of moments. SIAM J. Optim. 11(3), 796–817 (2001)
55. 55.
Madani, R., Sojoudi, S., Fazelnia, G., Lavaei, J.: Finding low-rank solutions of sparse linear matrix inequalities using convex optimization. SIAM J. Optim. 27(2), 725–758 (2017)Google Scholar
56. 56.
Sojoudi, S., Lavaei, J.: Convexification of optimal power flow problem by means of phase shifters. In: IEEE International Conference on Smart Grid Communications, pp. 756–761 (2013)Google Scholar
57. 57.
Farivar, M., Low, S.H.: Branch flow model: relaxations and convexification—Part II. IEEE Trans. Power Syst. 28(3), 2565–2572 (2013)Google Scholar
58. 58.
Low, S.H.: Convex relaxation of optimal power flow—Part I: formulations and equivalence. IEEE Trans. Control Netw. Syst. 1(1), 15–27 (2014)
59. 59.
Low, S.H.: Convex relaxation of optimal power flow—Part II: exactness. IEEE Trans. Control Netw. Syst. 1(2), 177–189 (2014)
60. 60.
Coffrin, C., Gordon, D., Scott, P.: NESTA, the NICTA Energy System Test Case Archive (2014). arXiv:1411.0359
61. 61.
Lehmann, K., Grastien, A., Van Hentenryck, P.: AC-feasibility on tree networks is NP-hard. IEEE Trans. Power Syst. 31(1), 798–801 (2016)Google Scholar
62. 62.
Bolognani, S., Zampieri, S.: On the existence and linear approximation of the power flow solution in power distribution networks. IEEE Trans. Power Syst. 31(1), 163–172 (2016)Google Scholar
63. 63.
Dvijotham, K., Nguyen, H., Turitsyn, K.: Solvability regions of affinely parameterized quadratic equations. IEEE Control Syst. Lett. 2(1), 25–30 (2018)Google Scholar
64. 64.
Nguyen, H.D., Dvijotham, K., Turitsyn, K.: Inner approximations of power flow feasibility sets (2017). arXiv:1708.06845

© Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2018

## Authors and Affiliations

• Somayeh Sojoudi
• 1
• Salar Fattahi
• 2