Advertisement

Mathematical Programming

, Volume 171, Issue 1–2, pp 55–85 | Cite as

Robust flows over time: models and complexity results

  • Corinna Gottschalk
  • Arie M. C. A. Koster
  • Frauke Liers
  • Britta Peis
  • Daniel Schmand
  • Andreas WierzEmail author
Full Length Paper Series A

Abstract

We study dynamic network flows with uncertain input data under a robust optimization perspective. In the dynamic maximum flow problem, the goal is to maximize the flow reaching the sink within a given time horizon T, while flow requires a certain travel time to traverse an edge. In our setting, we account for uncertain travel times of flow. We investigate maximum flows over time under the assumption that at most \(\varGamma \) travel times may be prolonged simultaneously due to delay. We develop and study a mathematical model for this problem. As the dynamic robust flow problem generalizes the static version, it is NP-hard to compute an optimal flow. However, our dynamic version is considerably more complex than the static version. We show that it is NP-hard to verify feasibility of a given candidate solution. Furthermore, we investigate temporally repeated flows and show that in contrast to the non-robust case (that is, without uncertainties) they no longer provide optimal solutions for the robust problem, but rather yield a worst case optimality gap of at least T. We finally show that the optimality gap is at most \(O(\eta k \log T)\), where \(\eta \) and k are newly introduced instance characteristics and provide a matching lower bound instance with optimality gap \(\varOmega (\log T)\) and \(\eta = k = 1\). The results obtained in this paper yield a first step towards understanding robust dynamic flow problems with uncertain travel times.

Mathematics Subject Classification

05C21 Flows in graphs 90C05 Linear programming 90C59 Approximation methods and heuristics 90C46 Optimality conditions, duality 

Notes

Acknowledgements

We thank the reviewers for their very careful reading of the manuscript and their valuable comments. We thank the DFG for their support within Project B06 in CRC TRR 154.

References

  1. 1.
    Aneja, Y.P., Chandrasekaran, R., Nair, K.: Maximizing residual flow under an arc destruction. Networks 38(4), 194–198 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Aronson, J.E.: A survey of dynamic network flows. Ann. Oper. Res. 20(1), 1–66 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Ben-Tal, A., El Ghaoui, L., Nemirovski, A.: Robust Optimization. Princeton University Press, Princeton (2009)CrossRefzbMATHGoogle Scholar
  4. 4.
    Bertsimas, D., Nasrabadi, E., Stiller, S.: Robust and adaptive network flows. Oper. Res. 61(5), 1218–1242 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bertsimas, D., Sim, M.: Robust discrete optimization and network flows. Math. Program. Ser. B 98, 49–71 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Dilworth, R.P.: A decomposition theorem for partially ordered sets. Ann. Math. 51, 161–166 (1950)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Disser, Y., Matuschke, J.: The complexity of computing a robust flow (2017). arXiv:1704.08241
  8. 8.
    Du, D., Chandrasekaran, R.: The maximum residual flow problem: NP-hardness with two-arc destruction. Networks 50(3), 181–182 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Ford Jr., L.R., Fulkerson, D.R.: Constructing maximal dynamic flows from static flows. Oper. Res. 6(3), 419–433 (1958)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Fortune, S., Hopcroft, J., Wyllie, J.: The directed subgraph homeomorphism problem. Theoret. Comput. Sci. 10(2), 111–121 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Grötschel, M., Lovász, L., Schrijver, A.: The ellipsoid method and its consequences in combinatorial optimization. Combinatorica 1(2), 169–197 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Gupta, U.I., Lee, D.T., Leung, J.T.: Efficient algorithms for interval graphs and circular-arc graphs. Networks 12(4), 459–467 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Karp, R.M.: Reducibility among combinatorial problems. In: Complexity of Computer Computations, pp. 85–103. Springer, Berlin (1972)Google Scholar
  14. 14.
    Koch, R., Nasrabadi, E., Skutella, M.: Continuous and discrete flows over time. A general model based on measure theory. Math. Methods Oper. Res. 73(3), 301–337 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Koch, T., Hiller, B., Pfetsch, M.E., Schewe, L.: Evaluating Gas Network Capacities. SIAM, Philadelphia (2015)CrossRefzbMATHGoogle Scholar
  16. 16.
    Köhler, E., Skutella, M.: Flows over time with load-dependent transit times. SIAM J. Optim. 15(4), 1185–1202 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Matuschke, J., McCormick, T.S., Oriolo, G., Peis, B., Skutella, M.: http://materials.dagstuhl.de/files/15/15412/15412.JannikMatuschke.ExtendedAbstract.pdf (2015)
  18. 18.
    Skutella, M.: An introduction to network flows over time. In: Cook, W.J., Lovász, L., Vygen, J. (eds.) Research Trends in Combinatorial Optimization, pp. 451–482. Springer, Berlin (2009)CrossRefGoogle Scholar
  19. 19.
    Wood, R.K.: Deterministic network interdiction. Math. Comput. Model. 17(2), 1–18 (1993)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany and Mathematical Optimization Society 2017

Authors and Affiliations

  1. 1.School of Business and EconomicsRWTH Aachen UniversityAachenGermany
  2. 2.Lehrstuhl II für MathematikRWTH Aachen UniversityAachenGermany
  3. 3.Lehrstuhl WirtschaftsmathematikFAU Erlangen-NürnbergErlangenGermany

Personalised recommendations