Symmetric sums of squares over k-subset hypercubes

  • Annie Raymond
  • James Saunderson
  • Mohit Singh
  • Rekha R. Thomas
Full Length Paper Series A
  • 66 Downloads

Abstract

We consider the problem of finding sum of squares (sos) expressions to establish the non-negativity of a symmetric polynomial over a discrete hypercube whose coordinates are indexed by the k-element subsets of [n]. For simplicity, we focus on the case \(k=2\), but our results extend naturally to all values of \(k \ge 2\). We develop a variant of the Gatermann–Parrilo symmetry-reduction method tailored to our setting that allows for several simplifications and a connection to flag algebras. We show that every symmetric polynomial that has a sos expression of a fixed degree also has a succinct sos expression whose size depends only on the degree and not on the number of variables. Our method bypasses much of the technical difficulties needed to apply the Gatermann–Parrilo method, and offers flexibility in obtaining succinct sos expressions that are combinatorially meaningful. As a byproduct of our results, we arrive at a natural representation-theoretic justification for the concept of flags as introduced by Razborov in his flag algebra calculus. Furthermore, this connection exposes a family of non-negative polynomials that cannot be certified with any fixed set of flags, answering a question of Razborov in the context of our finite setting.

Mathematics Subject Classification

05D99 12D15 20C30 90C22 90C27 

References

  1. 1.
    Bai, Y., de Klerk, E., Pasechnik, D.V., Sotirov, R.: Exploiting group symmetry in truss topology optimization. Optim. Eng. 10, 331–349 (2009)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Blekherman, G., Gouveia, J., Pfeiffer, J.: Sums of squares on the hypercube. Math. Z. 284(1), 41–54 (2016)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Bachoc, C., Gijswijt, D.C., Schrijver, A., Vallentin, F.: Invariant semidefinite programs. In: Anjos, M.F., Lasserre, J.B. (eds.) Handbook on Semidefinite, Conic and Polynomial Optimization, volume 166 of International Series on Operation Research and Management Science, pp. 219–269. Springer, New York (2012)Google Scholar
  4. 4.
    Blekherman, G., Parrilo, P.A., Thomas, R.R. (eds.): Semidefinite Optimization and Convex Algebraic Geometry, volume 13 of MOS-SIAM Series on Optimization. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2013)Google Scholar
  5. 5.
    Bachoc, C., Vallentin, F.: New upper bounds for kissing numbers from semidefinite programming. J. AMS 21, 909–924 (2008)MathSciNetMATHGoogle Scholar
  6. 6.
    de Klerk, E., Maharry, J., Pasechnik, D.V., Richter, R.B., Salazar, G.: Improved bounds for crossing numbers of \(k_{m, n}\) and \(k_n\). SIAM J. Discret. Math. 20, 189–202 (2006)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    de Klerk, E., Pasechnik, D.V.: Solving SDP’s in non-commutative algebras part I: the dual-scaling algorithm. Discussion paper from Tilburg University, Center for Economic Research (2005)Google Scholar
  8. 8.
    de Klerk, E., Pasechnik, D.V., Schrijver, A.: Reduction of symmetric semidefinite programs using the regular \(*\)-representation. Math. Program. Ser. B 109, 613–624 (2007)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    de Klerk, E., Sotirov, R.: Exploiting group symmetry in semidefinite programming relaxations of the quadratic assignment problem. Math. Program. Ser. A 122, 225–246 (2010)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Fulton, W., Harris, J.: Representation Theory: A First Course. Number 129 in Graduate Texts in Mathematics. Springer, Berlin (1991)MATHGoogle Scholar
  11. 11.
    Falgas-Ravry, V., Vaughan, E.R.: Applications of the semi-definite method to the Turán density problem for 3-graphs. Combin. Probab. Comput. 22(1), 21–54 (2013)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Fässler, A., Stiefel, E.: Group Theoretical Methods and Their Applications. Birkhäuser, Basel (1992)CrossRefMATHGoogle Scholar
  13. 13.
    Gijswijt, D.: Block diagonalization for algebra’s associated with block codes. arXiv:0910.4515 (2014)
  14. 14.
    Gvozdenović, N., Laurent, M.: Computing semidefinite programming lower bounds for the (fractional) chromatic number via block-diagonalization. SIAM J. Optim. 19, 592–615 (2008)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Gvozdenović, N., Laurent, M., Vallentin, F.: Block-diagonal semidefinite programming hierarchies for 0/1 programming. Oper. Res. Lett. 37, 27–31 (2009)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Gatermann, K., Parrilo, P.A.: Symmetry groups, semidefinite programs, and sums of squares. J. Pure Appl. Algebra 192(1–3), 95–128 (2004)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Grigoriev, D.: Complexity of Positivstellensatz proofs for the knapsack. Comput. Complex. 10(2), 139–154 (2001)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Gijswijt, D., Schrijver, A., Tanaka, H.: New upper bounds for nonbinary codes based on the Terwilliger algebra and semidefinite programming. J. Combin. Theory Ser. A 113, 1719–1731 (2006)Google Scholar
  19. 19.
    Hatami, H., Norine, S.: Undecidability of linear inequalities in graph homomorphism densities. J. Am. Math. Soc. 24(2), 547–565 (2011)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Jansson, L., Lasserre, J.B., Riener, C., Theobald, T.: Exploiting symmetries in SDP-relaxations for polynomial optimization. Math. Oper. Res 38(1), 122–141 (2013)Google Scholar
  21. 21.
    Kurpisz, A., Leppänen, S., Mastrolilli, M.: Sum-of-squares hierarchy lower bounds for symmetric formulations. In: Louveaux, Q., Skutella, Integer Programming and Combinatorial Optimization, pp. 362–374. Springer, Cham (2016)Google Scholar
  22. 22.
    Kanno, Y., Ohsaki, M., Murota, K., Katoh, N.: Group symmetry in interior-point methods for semidefinite program. Optim. Eng. 2, 293–320 (2001)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Kóvari, T., Sós, V., Turán, P.: On a problem of K. Zarankiewicz. Colloq Math. 3(1), 50–57 (1954)Google Scholar
  24. 24.
    Laurent, M.: Strengthened semidefinite bounds for codes. Math. Program. 109(2–3), 239–261 (2007)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Laurent, M.: Sums of squares, moment matrices and optimization over polynomials. In: Putinar, M., Sullivant, S. (eds.) Emerging Applications of Algebraic Geometry, volume 149 of IMA Volume in Mathematical Applications, pp. 157–270. Springer, New York (2009)Google Scholar
  26. 26.
    Lovász, L.: Large Networks and Graph Limits, volume 60 of American Mathematical Society Colloquium Publications. American Mathematical Society, Providence, RI (2012)CrossRefGoogle Scholar
  27. 27.
    Litjens, B., Polak, S., Schrijver, A.: Semidefinite bounds for nonbinary codes based on quadruples. In: Designs, Codes and Cryptography, pp. 1–14. Springer, US (2016)Google Scholar
  28. 28.
    Lee, T., Prakash, A., de Wolf, R., Yuen, H.: On the sum-of-squares degree of symmetric quadratic functions. arXiv:1601.02311 (2016)
  29. 29.
    Parrilo, P.A.: An explicit construction of distinguished representations of polynomials nonnegative over finite sets. Technical Report IfA AUT 02-02, ETH Zürich (2002)Google Scholar
  30. 30.
    Radziszowski, S.P., et al.: Small Ramsey numbers. Electron. J. Combin. 1(7) (1994)Google Scholar
  31. 31.
    Razborov, A.A.: Flag algebras. J. Symb. Log. 72(4), 1239–1282 (2007)MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Razborov, A.A.: On 3-hypergraphs with forbidden 4-vertex configurations. SIAM J. Discret. Math. 24(3), 946–963 (2010)MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Razborov, A.A.: On Turán’s (3, 4)-problem with forbidden subgraphs. Math. Notes 95(1–2), 245–252 (2014)MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Raymond, A., Singh, M., Thomas, R.R.: Symmetry in Turán sums of squares polynomials from flag algebras. arXiv:1507.03059 (2015)
  35. 35.
    Sagan, B.E.: The Symmetric Group, volume 203 of Graduate Texts in Mathematics. Springer, New York (2001). (2nd edn, Representations, Combinatorial Algorithms, and Symmetric Functions)Google Scholar
  36. 36.
    Schrijver, A.: Association Schemes and the Shannon Capacity: Eberlein Polynomials and the Erdös-Ko–Rado Theorem. Number 25 in Algebraic Methods in Graph Theory, Vol. I, II (Szeged, 1978), Colloqium Mathematical Society. János Bolyai, North-Holland, Amsterdam (1981)Google Scholar
  37. 37.
    Schrijver, A.: New code upper bounds from the Terwilliger algebra. IEEE Trans. Inf. Theory 51, 2859–2866 (2005)MathSciNetCrossRefMATHGoogle Scholar
  38. 38.
    Serre, J.-P.: Linear Representations of Finite Groups. Springer, New York. Translated from the second French edition by Leonard L. Scott, Graduate Texts in Mathematics, Vol. 42 (1977)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and Mathematical Optimization Society 2017

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of WashingtonSeattleUSA
  2. 2.Department of Electrical and Computer Systems EngineeringMonash UniversityMelbourneAustralia
  3. 3.H. Milton Stewart School of Industrial and Systems EngineeringGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations