Mathematical Programming

, Volume 163, Issue 1–2, pp 445–469 | Cite as

Truthful mechanism design via correlated tree rounding

  • Yossi Azar
  • Martin Hoefer
  • Idan Maor
  • Rebecca Reiffenhäuser
  • Berthold Vöcking
Full Length Paper Series A


A powerful algorithmic technique for truthful mechanism design is the maximal-in-distributional-range (MIDR) paradigm. Unfortunately, many such algorithms use heavy algorithmic machinery, e.g., the ellipsoid method and (approximate) solution of convex programs. In this paper, we present a correlated rounding technique for designing mechanisms that are truthful in expectation. It is elementary and can be implemented quickly. The main property we rely on is that the domain offers fractional optimum solutions with a tree structure. In auctions based on the generalized assignment problem, each bidder has a publicly known knapsack constraint that captures the subsets of items that are of value to him. He has a private valuation for each item and strives to maximize the value of assigned items minus payment. For this domain we design a truthful 2-approximate MIDR mechanism for social welfare maximization. It avoids using the ellipsoid method or convex programming. In contrast to some previous work, our mechanism achieves exact truthfulness. In restricted-related scheduling with selfish machines, each job comes with a public weight, and it must be assigned to a machine from a public job-specific subset. Each machine has a private speed and strives to maximize payments minus workload of jobs assigned to it. Here we design a mechanism for makespan minimization. This is a single-parameter domain, but the approximation status of the optimization problem is similar to unrelated machine scheduling: The best known algorithm obtains a (non-truthful) 2-approximation for unrelated machines, and there is 1.5-hardness. Our mechanism matches this bound with a truthful 2-approximation.


Mechanism design Rounding Combinatorial auctions Scheduling mechanisms 

Mathematics Subject Classification

68Q25 68W40 90B35 91B26 



The authors thank Piotr Krysta for insightful discussions and Salman Fadaei for pointing out an error in an earlier version of this work. This work has been supported by Israeli Science Foundation, I-CORE(4/11), and Deutsche Forschungsgemeinschaft within Cluster of Excellence MMCI at Saarland University.


  1. 1.
    Andelman, N.: Online and strategic aspects of network resource management algorithms. Ph.D. thesis, Tel Aviv University (2006)Google Scholar
  2. 2.
    Andelman, N., Azar, Y., Sorani, M.: Truthful approximation mechanisms for scheduling selfish related machines. Theory Comput. Syst. 40(4), 423–436 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Archer, A., Tardos, É.: Truthful mechanisms for one-parameter agents. In: Proceedings of 42nd Symposium Foundations of Computer Science (FOCS), pp. 482–491 (2001)Google Scholar
  4. 4.
    Ashlagi, I., Dobzinski, S., Lavi, R.: Optimal lower bounds for anonymous scheduling mechanisms. Math. Oper. Res. 37(2), 244–258 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Azar, Y., Epstein, L., Richter, Y., Woeginger, G.J.: All-norm approximation algorithms. J. Algorithms 52(2),120–133 (2004)Google Scholar
  6. 6.
    Blumrosen, L., Nisan, N.: Combinatorial auctions. In: Nisan, N., Tardos, É., Roughgarden, T., Vazirani, V. (eds.) Algorithmic Game Theory, chap. 11. Cambridge University Press, Cambridge (2007)Google Scholar
  7. 7.
    Buchfuhrer, D., Dughmi, S., Fu, H., Kleinberg, R., Mossel, E., Papadimitriou, C., Schapira, M., Singer, Y., Umans, C.: Inapproximability for VCG-based combinatorial auctions. In: Proceedings of 21st Symposium Discrete Algorithms (SODA), pp. 518–536 (2010)Google Scholar
  8. 8.
    Chakrabarty, D., Goel, G.: On the approximability of budgeted allocations and improved lower bounds for submodular welfare maximization and gap. SIAM J. Comput. 39(6), 2189–2211 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Chen, N., Gravin, N., Lu, P.: Truthful generalized assignments via stable matching. Math. Oper. Res. 39(3), 722–736 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Christodoulou, G., Koutsoupias, E., Kovács, A.: Mechanism design for fractional scheduling on unrelated machines. ACM Trans. Algorithms 6(2) (2010)Google Scholar
  11. 11.
    Christodoulou, G., Koutsoupias, E., Vidali, A.: A lower bound for scheduling mechanisms. Algorithmica 55(4), 729–740 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Christodoulou, G., Kovács, A.: A deterministic truthful PTAS for scheduling related machines. SIAM J. Comput. 42(4), 1572–1595 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Cramton, P., Shoham, Y., Steinberg, R. (eds.): Combinatorial Auctions. MIT Press, Cambridge (2006)zbMATHGoogle Scholar
  14. 14.
    Dhangwatnotai, P., Dobzinski, S., Dughmi, S., Roughgarden, T.: Truthful approximation schemes for single-parameter agents. SIAM J. Comput. 40(3), 915–933 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Dobzinski, S., Dughmi, S.: On the power of randomization in algorithmic mechanism design. SIAM J. Comput. 42(6), 2287–2304 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Dobzinski, S., Fu, H., Kleinberg, R.: Truthfulness via proxies. CoRR arXiv:1011.3232 (2010)
  17. 17.
    Dobzinski, S., Nisan, N.: Limitations of VCG-based mechanisms. Combinatorica 41(4), 379–396 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Dobzinski, S., Vondrák, J.: The computational complexity of truthfulness in combinatorial auctions. In: Proceedings of 13th Conference on Electronic Commerce (EC), pp. 405–422 (2012)Google Scholar
  19. 19.
    Dobzinski, S., Vondrák, J.: From query complexity to computational complexity. In: Proceedings of 44th Symposium on Theory of Computing (STOC), pp. 1107–1116 (2012)Google Scholar
  20. 20.
    Dobzinski, S., Vondrák, J.: Impossibility results for truthful combinatorial auctions with submodular valuations. J. ACM 63(1), 5 (2016)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Dughmi, S., Ghosh, A.: Truthful assignment without money. In: Proceedings of 11th Conference on Electronic Commerce (EC), pp. 325–334 (2010)Google Scholar
  22. 22.
    Dughmi, S., Roughgarden, T., Yan, Q.: From convex optimization to randomized mechanims: toward optimal combinatorial auctions. In: Proceedings of 43rd Symposium on Theory of Computing (STOC), pp. 149–158 (2011)Google Scholar
  23. 23.
    Dughmi, S., Vondrák, J.: Limitations of randomized mechanisms for combinatorial auctions. Games Econom. Behav. 92, 370–400 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Epstein, L., Levin, A., van Stee, R.: A unified approach to truthful scheduling on related machines. Math. Oper. Res. 41(1), 332–351 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Fadaei, S., Bichler, M.: A truthful-in-expectation mechanism for the generalized assignment problem. In: Proceedings of 10th International Conference on Web and Internet Economics (WINE), pp. 247–248 (2014)Google Scholar
  26. 26.
    Feige, U., Vondrák, J.: Approximation algorithms for allocation problems: improving the factor of 1-1/e. In: Proceedings of 47th Symposium on Foundations of Computer Science (FOCS), pp. 667–676 (2006)Google Scholar
  27. 27.
    Fleischer, L., Goemans, M., Mirrokni, V., Sviridenko, M.: Tight approximation algorithms for maximum separable assignment problems. Math. Oper. Res. 36(3), 416–431 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Hochbaum, D., Shmoys, D.: A polynomial approximation scheme for scheduling on uniform processors: using the dual approximation approach. SIAM J. Comput. 17(3), 539–551 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Khot, S., Lipton, R., Markakis, E., Mehta, A.: Inapproximability results for combinatorial auctions with submodular utility functions. Algorithmica 52(1), 3–18 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Koutsoupias, E., Vidali, A.: A lower bound of \(1+\phi \) for truthful scheduling mechanisms. Algorithmica 66(1), 211–223 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Kovács, A.: Fast monotone 3-approximation algorithm for scheduling related machines. In: Proceedings of 13th European Symposium Algorithms (ESA), pp. 616–627 (2005)Google Scholar
  32. 32.
    Krysta, P., Vöcking, B.: Online mechanism design (randomized rounding on the fly). In: Proceedings of 39th International Colloquium Automata, Languages and Programming (ICALP), pp. 636–647 (2012)Google Scholar
  33. 33.
    Lavi, R., Swamy, C.: Truthful and near-optimal mechanism design via linear programming. J. ACM 58(6), 25 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Lehmann, D., O’Callaghan, L., Shoham, Y.: Truth revelation in approximately efficient combinatorial auctions. J. ACM 49(5) (2002)Google Scholar
  35. 35.
    Lenstra, J., Shmoys, D., Tardos, É.: Approximation algorithms for scheduling unrelated parallel machines. Math. Prog. 46(3), 259–271 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Lu, P.: On 2-player randomized mechanisms for scheduling. In: Proceedings of 5th International Workshop Internet and Network Economics (WINE), pp. 30–41 (2009)Google Scholar
  37. 37.
    Lu, P., Yu, C.: An improved randomized truthful mechanism for scheduling unrelated machines. In: Proceedings of 25th Symposium on Theoret. Aspects of Computer Science (STACS), pp. 527–538 (2008)Google Scholar
  38. 38.
    Lu, P., Yu, C.: Randomized truthful mechanisms for scheduling unrelated machines. In: Proceedings of 4th International Workshop Internet and Network Economics (WINE), pp. 402–413 (2008)Google Scholar
  39. 39.
    Milgrom, P.: Putting Auction Theory to Work. Cambridge University Press, Cambridge (2004)CrossRefGoogle Scholar
  40. 40.
    Mirrokni, V., Schapira, M., Vondrák, J.: Tight information-theoretic lower bounds for welfare maximization in combinatorial auctions. In: Proceedings of 9th Conference on Electronic Commerce (EC), pp. 70–77 (2008)Google Scholar
  41. 41.
    Nisan, N., Ronen, A.: Algorithmic mechanism design. Games Econom. Behav. 35, 166–196 (2001)CrossRefGoogle Scholar
  42. 42.
    Shmoys, D., Tardos, É.: An approximation algorithm for the generalized assignment problem. Math. Prog. 62(3), 461–474 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Tamir, A.: Least majorized elements and generalized polymatroids. Math. Oper. Res. 20, 583–590 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Vondrák, J.: Optimal approximation for the submodular welfare problem in the value oracle model. In: Proceedings of 40th Symposium on Theory of Computing (STOC), pp. 67–74 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and Mathematical Optimization Society 2016

Authors and Affiliations

  • Yossi Azar
    • 1
  • Martin Hoefer
    • 2
  • Idan Maor
    • 1
  • Rebecca Reiffenhäuser
    • 3
  • Berthold Vöcking
    • 3
  1. 1.Department of Computer ScienceTel Aviv UniversityTel AvivIsrael
  2. 2.Max-Planck-Institut für Informatik and Saarland UniversitySaarbrückenGermany
  3. 3.Department of Computer ScienceRWTH Aachen UniversityAachenGermany

Personalised recommendations