Mathematical Programming

, Volume 158, Issue 1–2, pp 235–266 | Cite as

Exact quadratic convex reformulations of mixed-integer quadratically constrained problems

  • Alain Billionnet
  • Sourour Elloumi
  • Amélie Lambert
Full Length Paper Series A

Abstract

We propose a solution approach for the general problem (QP) of minimizing a quadratic function of bounded integer variables subject to a set of quadratic constraints. The resolution is based on the reformulation of the original problem (QP) into an equivalent quadratic problem whose continuous relaxation is convex, so that it can be effectively solved by a branch-and-bound algorithm based on quadratic convex relaxation. We concentrate our efforts on finding a reformulation such that the continuous relaxation bound of the reformulated problem is as tight as possible. Furthermore, we extend our method to the case of mixed-integer quadratic problems with the following restriction: all quadratic sub-functions of purely continuous variables are already convex. Finally, we illustrate the different results of the article by small examples and we present some computational experiments on pure-integer and mixed-integer instances of (QP). Most of the considered instances with up to 53 variables can be solved by our approach combined with the use of Cplex.

Keywords

Integer quadratic programming Equivalent convex reformulation Semidefinite programming Branch-and-bound algorithm 

Mathematics Subject Classification

90C11 90C20 

References

  1. 1.
    Adams, W.P., Sherali, H.D.: Reformulation linearization technique for discrete optimization problems. In: Pardalos, Panos M., Du, Ding-Zhu, Graham, Ronald L. (eds.) Handbook of Combinatorial Optimization, pp. 2849–2896. Springer, New York (2013)Google Scholar
  2. 2.
    Al-Khayyal, F.A., Larsen, C., Van Voorhis, T.: A relaxation method for nonconvex quadratically constrained programs. J. Glob. Optim. 6, 215–230 (1995)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Anjos, M.F., Lasserre, J.B.: Handbook of semidefinite, conic and polynomial optimization: theory, algorithms, software and applications. Int. Ser. Oper. Res. Manag. Sci. 166, 1–22 (2012)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Audet, C., Hansen, P., Jaumard, B., Savard, G.: A branch and cut algorithm for non-convex quadratically constrained quadratic programming. Math. Program. 87(1), 131–152 (2000)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Audet, C., Hansen, P., Savard, G.: Essays and Surveys in Global Optimization. GERAD 25th anniversary series. Springer, New York (2005)CrossRefMATHGoogle Scholar
  6. 6.
    Bao, X., Sahinidis, N.V., Tawarmalani, M.: Semidefinite relaxations for quadratically constrained quadratic programming: a review and comparisons. Math. Program. 129, 129–157 (2011)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Billionnet, A., Elloumi, S., Lambert, A.: Linear reformulations of integer quadratic programs. In: MCO 2008, September 8–10, pp. 43–51 (2008)Google Scholar
  8. 8.
    Billionnet, A., Elloumi, S., Lambert, A.: Extending the QCR method to the case of general mixed integer program. Math. Program. 131(1), 381–401 (2012)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Borchers, B.: Csdp, a c library for semidefinite programming. Optim. Methods Softw. 11(1), 613–623 (1999)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Buchheim, C., Wiegele, A.: Semidefinite relaxations for non-convex quadratic mixed-integer programming. Math. Program. 141(1–2), 435–452 (2013)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Burer, S., Letchford, A.: Non-convex mixed-integer nonlinear programming: a survey. Surv. Oper. Res. Manag. Sci. 17(2), 97–106 (2012)MathSciNetGoogle Scholar
  12. 12.
    Floudas, C.A.: Deterministic Global Optimization. Kluwer Academic Publishing, Dordrecht (2000)CrossRefMATHGoogle Scholar
  13. 13.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A guide to the Theory of NP-Completness. W.H. Freeman, San Francisco (1979)MATHGoogle Scholar
  14. 14.
    IBM-ILOG. Ibm ilog cplex 12.5 reference manual. http://pic.dhe.ibm.com/infocenter/cosinfoc/v12r2/index.jsp (2013)
  15. 15.
    Lambert, A.: IQCP/MIQCP: Library of integer and mixed-integer quadratic quadratically constrained programs. http://cedric.cnam.fr/~lambe_a1/smiqp/Library/iqcp_miqcp.html (2013)
  16. 16.
    Liberti, L., Maculan, N.: Global optimization: From Theory to Tmplementation. Chapter: Nonconvex optimization and its applications. Springer, New York (2006)CrossRefMATHGoogle Scholar
  17. 17.
    Linderoth, J.: A simplicial branch-and-bound algorithm for solving quadratically constrained quadratic programs. Math. Program. 103, 251–282 (2005)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    McCormick, G.P.: Computability of global solutions to factorable non-convex programs: Part i: convex underestimating problems. Math. Program. 10(1), 147–175 (1976)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Misener, R., Floudas, C.A.: Global optimization of mixed-integer quadratically-constrained quadratic programs (MIQCQP) through piecewise-linear and edge-concave relaxations. Math. Program. 136, 155–182 (2012)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Misener, R., Floudas, C.A.: GloMIQO: global mixed-integer quadratic optimizer. J. Glob. Optim. 57(1), 3–50 (2013)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Raber, U.: A simplicial branch-and-bound method for solving nonconvex all-quadratic programs. J. Glob. Optim. 13, 417–432 (1998)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Saxena, A., Bonami, P., Lee, J.: Convex relaxations of non-convex mixed integer quadratically constrained programs: projected formulations. Math. Program. 130, 359–413 (2011)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Tawarmalani, M., Sahinidis, N.V.: Convexification and Global Optimization in Continuous and Mixed-integer Nonlinear Programming. Kluwer Academic Publishing, Dordrecht (2002)CrossRefMATHGoogle Scholar
  24. 24.
    Tawarmalani, M., Sahinidis, N.V.: A polyhedral branch-and-cut approach to global optimization. Math. Program. 103(2), 225–249 (2005)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and Mathematical Optimization Society 2015

Authors and Affiliations

  • Alain Billionnet
    • 1
  • Sourour Elloumi
    • 1
  • Amélie Lambert
    • 2
  1. 1.CEDRIC-ENSIIEEvry cedexFrance
  2. 2.CEDRIC-CnamParis cedex 03France

Personalised recommendations