Mathematical Programming

, Volume 158, Issue 1–2, pp 547–564 | Cite as

Duality for mixed-integer convex minimization

  • Michel Baes
  • Timm Oertel
  • Robert Weismantel
Short Communication Series A


We extend in two ways the standard Karush–Kuhn–Tucker optimality conditions to problems with a convex objective, convex functional constraints, and the extra requirement that some of the variables must be integral. While the standard Karush–Kuhn–Tucker conditions involve separating hyperplanes, our extension is based on mixed-integer-free polyhedra. Our optimality conditions allow us to define an exact dual of our original mixed-integer convex problem.

Mathematics Subject Classification

90C11 90C46 



We would like to thank the reviewers, whose careful comments improved significantly the presentation of our results.


  1. 1.
    Averkov, G., Weismantel, R.: Transversal numbers over subsets of linear spaces. Adv. Geom. 12(1), 19–28 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Balas, E.: Disjunctive programming and a hierarchy of relaxations for discrete optimization problems. SIAM J. Algebraic Discrete Methods 6, 466–486 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Balas, E.: Disjunctive programming: cutting planes from logical conditions. In: Mangasarian, O.L. (ed.) Nonlinear Programming 2, pp. 279–312. Academic Press, New York (1975)Google Scholar
  4. 4.
    Doignon, J.-P.: Convexity in cristallographical lattices. J. Geom. 3, 71–85 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Held, M., Karp, R.M.: The traveling salesman problem and minimum spanning trees. Oper. Res. 18, 1138–1162 (1970)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Jeroslow, R.G.: Cutting plane theory: algebraic methods. Discrete Math. 23, 121–150 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Jeroslow, R.G.: An introduction to the theory of cutting planes. Ann. Discrete Math. 5, 71–95 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Jeroslow, R.G.: Minimal inequalities. Math. Program. 17(1), 1–15 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Johnson, E.L.: Cyclic groups, cutting planes and shortest paths. In: Hu, T.C., Robinson, S.M. (eds.) Math. Program., pp. 185–211. Academic Press, New York (1973)Google Scholar
  10. 10.
    Johnson, E.L.: On the group problem and a subadditive approach to integer programming. Ann. Discrete Math. 5, 97–112 (1979)Google Scholar
  11. 11.
    Karush, W.: Minima of functions of several variables with inequalities as side conditions. Dissertation, Department of Mathematics, University of Chicago (1939)Google Scholar
  12. 12.
    Kuhn, H.W., Tucker, A.W.: Nonlinear programming. In: Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, 1950, pp. 481–492. University of California Press, Berkeley and Los Angeles (1951)Google Scholar
  13. 13.
    Lasserre, J.B.: A Lagrangian relaxation view of linear and semidefinite hierarchies. SIAM J. Optim. 23(3), 1742–1756 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Laurent, M.: A comparison of the Sherali-Adams, Lovász-Schrijver and Lasserre relaxations for 0–1 programming. Math. Oper. Res. 28(3), 470–496 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Lovász, L.: Geometry of numbers and integer programming. In: Mathematical Programming (Tokyo, 1988), vol. 6, Mathematics and its Applications (Japanese Series), pp. 177–201. SCIPRESS, Tokyo (1989)Google Scholar
  16. 16.
    Lovász, László: Schrijver, A.: Cones of matrices and set-functions and 0/1 optimization. SIAM J. Optim. 1, 166–190 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Morán, D.A., Dey, S.S., Vielma, J.P.: A strong dual for conic mixed-integer programs. SIAM J. Optim. 22(3), 1136–1150 (2012)Google Scholar
  18. 18.
    Murota, K.: Discrete Convex Analysis. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, SIAM Monographs on Discrete Mathematics and Applications (2003)CrossRefzbMATHGoogle Scholar
  19. 19.
    Nemhauser, G.L., Wolsey, L.A.: Integer and Combinatorial Optimization. Wiley, New York (1988)CrossRefzbMATHGoogle Scholar
  20. 20.
    Nesterov, Y.: Introductory Lectures on Convex Optimization. Applied Optimization, vol. 87. Kluwer Academic Publishers, Boston (2004)Google Scholar
  21. 21.
    Sherali, H.D., Adams, W.P.: A hierarchy of relaxations between the continuous and convex hull representations for zero-one programming problems. SIAM J. Discrete Math. 3, 411–430 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Sherali, H.D., Adams, W.P.: A Reformulation-Linearization Technique for Solving Discrete and Continuous Nonconvex Problems. Kluwer, Norwell (1999)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and Mathematical Optimization Society 2015

Authors and Affiliations

  1. 1.Institute for MathematicsUniversity of ZurichZurichSwitzerland
  2. 2.Institute for Operations Research, Department of MathematicsETH ZurichZurichSwitzerland

Personalised recommendations