Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

A distributionally robust perspective on uncertainty quantification and chance constrained programming

Abstract

The objective of uncertainty quantification is to certify that a given physical, engineering or economic system satisfies multiple safety conditions with high probability. A more ambitious goal is to actively influence the system so as to guarantee and maintain its safety, a scenario which can be modeled through a chance constrained program. In this paper we assume that the parameters of the system are governed by an ambiguous distribution that is only known to belong to an ambiguity set characterized through generalized moment bounds and structural properties such as symmetry, unimodality or independence patterns. We delineate the watershed between tractability and intractability in ambiguity-averse uncertainty quantification and chance constrained programming. Using tools from distributionally robust optimization, we derive explicit conic reformulations for tractable problem classes and suggest efficiently computable conservative approximations for intractable ones.

This is a preview of subscription content, log in to check access.

Fig. 1

Notes

  1. 1.

    We call \(\mathcal {C}_i\) essentially strictly feasible if there is \((\varvec{z}, \varvec{u}) \in \mathcal {C}_i\) that satisfies all non-polyhedral constraints in (5) strictly, see [4].

References

  1. 1.

    Ben-Tal, A., Ghaoui, L.El, Nemirovski, A.: Robust Optimization. Princeton University Press, Princeton (2009)

  2. 2.

    Ben-Tal, A., Den Hertog, D., De Waegenaere, A., Melenberg, B., Rennen, G.: Robust solutions of optimization problems affected by uncertain probabilities. Manag. Sci. 59(2), 341–357 (2013)

  3. 3.

    Ben-Tal, A., Nemirovski, A.: Robust solutions of linear programming problems contaminated with uncertain data. Math. Program. A 88(3), 411–424 (2000)

  4. 4.

    Ben-Tal, A., Nemirovski, A.: Lectures on Modern Convex Optimization: Analysis, Algorithms, and Engineering Applications. SIAM, Philadelphia (2001)

  5. 5.

    Bertsimas, D., Gupta, V., Kallus,N.: Data-driven robust optimization. Available on arXiv.org (2013)

  6. 6.

    Bertsimas, D., Popescu, I.: Optimal inequalities in probability theory: a convex optimization approach. SIAM J. Optim. 15(3), 780–804 (2004)

  7. 7.

    Bertsimas, D., Sim, M.: The price of robustness. Oper. Res. 52(1), 35–53 (2004)

  8. 8.

    Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)

  9. 9.

    Calafiore, G.C., El Ghaoui, L.: On distributionally robust chance-constrained linear programs. J. Optim. Theory Appl. 130(1), 1–22 (2006)

  10. 10.

    Casella, G., Berger, R.L.: Statistical Inference, 2nd edn. Duxbury Thomson Learning, Pacific Grove, CA (2002)

  11. 11.

    Chen, W., Sim, M., Sun, J., Teo, C.-P.: From CVaR to uncertainty set: implications in joint chance-constrained optimization. Oper. Res. 58(2), 470–485 (2010)

  12. 12.

    Chen, X., Sim, M., Sun, P.: A robust optimization perspective on stochastic programming. Oper. Res. 55(6), 1058–1071 (2007)

  13. 13.

    Delage, E., Ye, Y.: Distributionally robust optimization under moment uncertainty with application to data-driven problems. Oper. Res. 58(3), 596–612 (2010)

  14. 14.

    DeMiguel, V., Nogales, F.J.: Portfolio selection with robust estimation. Oper. Res. 57(3), 560–577 (2009)

  15. 15.

    Dharmadhikari, S.W., Joag-Dev, K.: Unimodality, Convexity, and Applications, Volume 27 of Probability and Mathematical Statistics. Academic Press, Waltham (1988)

  16. 16.

    Doan, X.V., Li, X., Natarajan, K.: Robustness to dependency in portfolio optimization using overlapping marginals. Available on optimization online (2013)

  17. 17.

    Doan, X.V., Natarajan, K.: On the complexity of nonoverlapping multivariate marginal bounds for probabilistic combinatorial optimization problems. Oper. Res. 60(1), 138–149 (2012)

  18. 18.

    El Ghaoui, L., Oks, M., Oustry, F.: Worst-case value-at-risk and robust portfolio optimization: a conic programming approach. Oper. Res. 51(4), 543–556 (2003)

  19. 19.

    Erdoğan, E., Iyengar, G.: Ambiguous chance constrained problems and robust optimization. Math. Program. B 107(1–2), 37–61 (2006)

  20. 20.

    Gauss, C.F.: Theoria combinationis observationum erroribus minimis obnoxiae, pars prior. Comment. Soc. Reg. Sci. Gott. Recent. 33, 321–327 (1821)

  21. 21.

    Han, S., Tao, M., Topcu, U., Owhadi, H., Murray, R. M.: Convex optimal uncertainty quantification. Available on arXiv.org, (2013)

  22. 22.

    Hanasusanto, G. A., Roitch, V., Kuhn, D., Wiesemann,W.: Ambiguous joint chance constraints with conic dispersion measures. Working Paper, Imperial College London and École Polytechnique Fédérale de Lausanne 2015

  23. 23.

    Hanasusanto, G.A., Roitch, V., Kuhn, D., Wiesemann, W.: A distributionally robust perspective on uncertainty quantification and chance constrained programming. Technical Report, Imperial College London and École Polytechnique Fédérale de Lausanne (2015)

  24. 24.

    Hu Z., Hong,L. J.: Kullback-Leibler divergence constrained distributionally robust optimization. Available on optimization online (2012)

  25. 25.

    Hu, Z., Hong, L. J., So,A. M.-C.: Ambiguous probabilistic programs. Available on optimization online (2013)

  26. 26.

    Huber, P.J.: Robust estimation of a location parameter. Ann. Stat. 53(1), 73–101 (1964)

  27. 27.

    Jasour, A., Aybat, N. S., Lagoa, C.: Semidefinite programming for chance optimization over semialgebraic sets. Available on arXiv.org (2014)

  28. 28.

    Jiang, R., Guan, Y.: Data-driven chance constrained stochastic program. Available on optimization online (2012)

  29. 29.

    Korski, J., Pfeuffer, F., Klamroth, K.: Biconvex sets and optimization with biconvex functions: a survey and extensions. Math. Methods Oper. Res. 66(3), 373–407 (2007)

  30. 30.

    Lam, S.-W., Ng, T.S., Sim, M., Song, J.-H.: Multiple objectives satisficing under uncertainty. Oper. Res. 61(1), 214–227 (2013)

  31. 31.

    Mohajerin Esfahani, P., Kuhn, D.: Data-driven distributionally robust optimization using the Wasserstein metric: performance guarantees and tractable reformulations. Working Paper, École Polytechnique Fédérale de Lausanne (2015)

  32. 32.

    Natarajan, K., Pachamanova, D., Sim, M.: Incorporating asymmetric distributional information in robust value-at-risk optimization. Manag. Sci. 54(3), 573–585 (2008)

  33. 33.

    Nemirovski, A., Shapiro, A.: Convex approximations of chance constrained programs. SIAM J. Optim. 17(4), 969–996 (2006)

  34. 34.

    Owhadi, H., Scovel, C., Sullivan, T.J., McKerns, M., Ortiz, M.: Optimal uncertainty quantification. SIAM Rev. 55(2), 271–345 (2013)

  35. 35.

    Pflug, G., Pichler, A., Wozabal, D.: The \(1/n\) investment strategy is optimal under high model ambiguity. J. Bank. Finance 36(2), 410–417 (2012)

  36. 36.

    Popescu, I.: An SDP approach to optimal moment bounds for convex classes of distributions. Math. Oper. Res. 50(3), 632–657 (2005)

  37. 37.

    Rachev, S.T.: Probability Metrics and the Stability of Stochastic Models. Wiley, New York (1991)

  38. 38.

    Shapiro, A.: On duality theory of conic linear problems. In: Semi-infinite Programming, chapter 7, pp 135–165. Kluwer Academic Publishers (2001)

  39. 39.

    Shapiro, A., Kleywegt, A.: Minimax analysis of stochastic problems. Optim. Methods Softw. 17(3), 523–542 (2002)

  40. 40.

    Sun, H., Xu, H.: Asymptotic convergence analysis for distributional robust optimization and equilibrium problems. Available on optimization online (2013)

  41. 41.

    Van Parys, B.P.G., Goulart, P.J., Kuhn, D.: Generalized Gauss inequalities via semidefinite programming. Math. Program. A (2015) (in press)

  42. 42.

    Van Parys, B.P.G., Kuhn, D., Goulart, P.J., Morari, M.: Distributionally robust control of constrained stochastic systems. Available on optimization online (2013)

  43. 43.

    Vandenberghe, L., Boyd, S., Comanor, K.: Generalized Chebyshev bounds via semidefinite programming. SIAM Rev. 49(1), 52–64 (2007)

  44. 44.

    Wiesemann, W., Kuhn, D., Rustem, B.: Robust Markov decision processes. Math. Oper. Res. 38(1), 153–183 (2013)

  45. 45.

    Wiesemann, W., Kuhn, D., Sim, M.: Distributionally robust convex optimization. Oper. Res. 62(6), 1358–1376 (2014)

  46. 46.

    Xu, H., Caramanis, C., Mannor, S.: Optimization under probabilistic envelope constraints. Oper. Res. 60(3), 682–699 (2012)

  47. 47.

    Yanıkoğlu, İ., Den Hertog, D.: Safe approximations of ambiguous chance constraints using historical data. INFORMS J. Comput. 25(4), 666–681 (2013)

  48. 48.

    Žáčková, J.: On minimax solutions of stochastic linear programming problems. Čas. Pěst. Mat. 91(4), 423–430 (1966)

  49. 49.

    Zymler, S., Kuhn, D., Rustem, B.: Distributionally robust joint chance constraints with second-order moment information. Math. Program. A 137(1–2), 167–198 (2013)

  50. 50.

    Zymler, S., Kuhn, D., Rustem, B.: Worst-case value-at-risk of non-linear portfolios. Manag. Sci. 59(1), 172–188 (2013)

Download references

Acknowledgments

This research was supported by the Swiss National Science Foundation under Grant BSCGI0_157733 and by EPSRC under Grant EP/I014640/1.

Author information

Correspondence to Daniel Kuhn.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hanasusanto, G.A., Roitch, V., Kuhn, D. et al. A distributionally robust perspective on uncertainty quantification and chance constrained programming. Math. Program. 151, 35–62 (2015). https://doi.org/10.1007/s10107-015-0896-z

Download citation

Mathematics Subject Classification

  • 90C15