Mathematical Programming

, Volume 155, Issue 1–2, pp 403–433 | Cite as

Conic version of Loewner–John ellipsoid theorem

  • Alberto SeegerEmail author
  • Mounir Torki
Full Length Paper Series A


We extend John’s inscribed ellipsoid theorem, as well as Loewner’s circumscribed ellipsoid theorem, from convex bodies to proper cones. To be more precise, we prove that a proper cone \(K\) in \(\mathbb {R}^n\) contains a unique ellipsoidal cone \(Q^\mathrm{in}(K)\) of maximal canonical volume and, on the other hand, it is enclosed by a unique ellipsoidal cone \(Q^\mathrm{circ}(K)\) of minimal canonical volume. In addition, we explain how to construct the inscribed ellipsoidal cone \(Q^\mathrm{in}(K)\). The circumscribed ellipsoidal cone \(Q^\mathrm{circ}(K)\) is then obtained by duality arguments. The canonical volume of an ellipsoidal cone is defined as the usual \(n\)-dimensional volume of a certain truncation of the cone.


Convex body Convex cone Inscribed ellipsoidal cone Circumscribed ellipsoidal cone 

Mathematics Subject Classification

51M25 52A38 47L07 


  1. 1.
    Ball., K.: An elementary introduction to modern convex geometry. In: Levy, S. (ed.) Flavors of Geometry. Mathematical Sciences Research Institute Publications, vol. 31, pp. 1–58. Cambridge University Press, Cambridge (1997)Google Scholar
  2. 2.
    Berman, A., Neumann, M., Stern, R.J.: Nonnegative Matrices in Dynamic Systems. Wiley, New York (1989)zbMATHGoogle Scholar
  3. 3.
    Calafiore, G.C.: Approximation of n-dimensional data using spherical and ellipsoidal primitives. IEEE Trans. Syst. Man Cybern. 32, 269–278 (2002)CrossRefGoogle Scholar
  4. 4.
    Correa, R., Seeger, A.: Directional derivative of a minimax function. Nonlinear Anal. 9, 13–22 (1985)zbMATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Danskin, J.M.: The theory of max–min, with applications. SIAM J. Appl. Math. 14, 641–664 (1966)zbMATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Faraut, J., Korányi, A.: Analysis on Symmetric Cones. Oxford University Press, New York (1994)zbMATHGoogle Scholar
  7. 7.
    Fisher, D.D.: Minimum ellipsoids. Math. Comput. 18, 669–673 (1964)zbMATHCrossRefGoogle Scholar
  8. 8.
    Goffin, J.-L.: The relaxation method for solving systems of linear inequalities. Math. Oper. Res. 5, 388–414 (1980)zbMATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Gourion, D., Seeger, A.: Deterministic and stochastic methods for computing volumetric moduli of convex cones. Comput. Appl. Math. 29, 215–246 (2010)zbMATHMathSciNetGoogle Scholar
  10. 10.
    Gourion, D., Seeger, A.: Solidity indices for convex cones. Positivity 16, 685–705 (2012)zbMATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Güler, O.: Barrier functions in interior point methods. Math. Oper. Res. 21, 860–885 (1996)zbMATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    Güler, O., Gürtuna, F.: Symmetry of convex sets and its applications to the extremal ellipsoids of convex bodies. Optim. Methods Softw. 27, 735–759 (2012)zbMATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    Gruber, P.M.: John and Loewner ellipsoids. Discrete Comput. Geom. 46, 776–788 (2011)zbMATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    Henk, M.: Löwner–John ellipsoids. Doc. Math. Extra Vol. Optim. Stor., 95–106 (2012)Google Scholar
  15. 15.
    Henrion, R., Seeger, A.: On properties of different notions of centers for convex cones. Set-Valued Var. Anal. 18, 205–231 (2010)zbMATHMathSciNetCrossRefGoogle Scholar
  16. 16.
    Henrion, R., Seeger, A.: Inradius and circumradius of various convex cones arising in applications. Set-Valued Var. Anal. 18, 483–511 (2010)zbMATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    Iusem, A., Seeger, A.: Pointedness, connectedness, and convergence results in the space of closed convex cones. J. Convex Anal. 11, 267–284 (2004)zbMATHMathSciNetGoogle Scholar
  18. 18.
    Iusem, A., Seeger, A.: Axiomatization of the index of pointedness for closed convex cones. Comput. Appl. Math. 24, 245–283 (2005)zbMATHMathSciNetGoogle Scholar
  19. 19.
    Iusem, A., Seeger, A.: Distances between closed convex cones: old and new results. J. Convex Anal. 17, 1033–1055 (2010)zbMATHMathSciNetGoogle Scholar
  20. 20.
    John, F.: Extremum Problems with Inequalities as Subsidiary Conditions. Studies and Essays Presented to R. Courant on his 60th Birthday. Interscience Publ, New York (1948)Google Scholar
  21. 21.
    Kelly, L.M., Murty, K.G., Watson, L.T.: CP-rays in simplicial cones. Math. Program. 48, 387–414 (1990)zbMATHMathSciNetCrossRefGoogle Scholar
  22. 22.
    Lasserre., J.B.: A generalization of Löwner–John’s ellipsoid theorem. Math. Program. Ser. A (2014). doi: 10.1007/s10107-014-0798-5
  23. 23.
    Nesterov, Y., Nemirovskii, A.S.: Interior-Point Polynomial Algorithms in Convex Programming. SIAM Studies in Applied Mathematics, Philadelphia, PA (1994)zbMATHCrossRefGoogle Scholar
  24. 24.
    Seeger, A., Torki, M.: On highly eccentric cones. Beitr. Algebra Geom. 55, 521–544 (2014)zbMATHMathSciNetCrossRefGoogle Scholar
  25. 25.
    Seeger, A., Torki, M.: Centers of sets with symmetry or cyclicity properties. TOP 22, 716–738 (2014)zbMATHMathSciNetCrossRefGoogle Scholar
  26. 26.
    Seeger., A, Torki., M.: Centers and partial volumes of convex cones. I. Basic theory. Beitr. Algebra Geom. online since (Sept 2014)Google Scholar
  27. 27.
    Seeger., A, Torki., M.: Centers and partial volumes of convex cones. II. Advanced topics. Beitr. Algebra Geom., online since (Sept 2014)Google Scholar
  28. 28.
    Sitarz, S.: The medal points’ incenter for rankings in sport. Appl. Math. Lett. 26, 408–412 (2013)zbMATHMathSciNetCrossRefGoogle Scholar
  29. 29.
    Stern, R., Wolkowicz, H.: Invariant ellipsoidal cones. Linear Algebra Appl. 150, 81–106 (1991)zbMATHMathSciNetCrossRefGoogle Scholar
  30. 30.
    Stern, R., Wolkowicz, H.: Exponential nonnegativity on the ice cream cone. SIAM J. Matrix Anal. Appl. 12, 160–165 (1991)zbMATHMathSciNetCrossRefGoogle Scholar
  31. 31.
    Vinberg, E.B.: The theory of convex homogeneous cones. Trans. Moskow Math. 12, 340–403 (1963)zbMATHGoogle Scholar
  32. 32.
    Walkup, D.W., Wets, R.J.B.: Continuity of some convex-cone-valued mappings. Proc. Am. Math. Soc. 18, 229–235 (1967)zbMATHMathSciNetCrossRefGoogle Scholar
  33. 33.
    Weber, M.J., Schröcker, H.P.: Davis’ convexity theorem and extremal ellipsoids. Beitr. Algebra Geom. 51, 263–274 (2010)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and Mathematical Optimization Society 2014

Authors and Affiliations

  1. 1.Département de MathématiquesUniversité d’AvignonAvignonFrance
  2. 2.CERIUniversité d’AvignonAvignonFrance

Personalised recommendations