1.

Aggarwal, N., Garg, N., Gupta, S.: A 4/3-approximation for TSP on cubic 3-edge-connected graphs. CoRR abs/1101.5586 (2011)

2.

Balinski, M.L.: Integer programming: methods, uses, computation. Manag. Sci.

**12**, 253–313 (1965)

CrossRefMATHMathSciNetGoogle Scholar3.

Berman, P., Karpinski, M.: 8/7-approximation algorithm for (1,2)-TSP. In: Proceedings of the 17th ACM-SIAM Symposium on Discrete Algorithms, pp. 641–648 (2006)

4.

Bläser, M., Shankar Ram, L.: An improved approximation algorithm for TSP with distances one and two. In: Liskiewicz, M., Reischuk, R. (eds.) Fundamentals of Computation Theory, 15th International Symposium, FCT 2005, Lecture Notes in Computer Science, vol. 3623, pp. 504–515. Springer (2005)

5.

Boyd, S., Carr, R.: Finding low cost TSP and 2-matching solutions using certain half-integer subtour vertices. Discrete Optim.

**8**, 525–539 (2011). Prior version available at

http://www.site.uottawa.ca/sylvia/recentpapers/halftri.pdf. Accessed 27 June 2011

6.

Boyd, S., Sitters, R., van der Ster, S., Stougie, L.: The traveling salesman problem on cubic and subcubic graphs. Math. Program. **144**(1–2), 227–245 (2014). A preliminary version appeared in IPCO 2011

7.

Christofides, N.: Worst case analysis of a new heuristic for the traveling salesman problem. Report 388, Graduate School of Industrial Administration, Carnegie-Mellon University, Pittsburgh, PA (1976)

8.

Dantzig, G., Fulkerson, R., Johnson, S.: Solution of a large-scale traveling-salesman problem. Oper. Res.

**2**, 393–410 (1954)

MathSciNetGoogle Scholar9.

Gamarnik, D., Lewenstein, M., Sviridenko, M.: An improved upper bound for the TSP in cubic 3-edge-connected graphs. Oper. Res. Lett. **33**(5), 467–474 (2005)

10.

Goemans, M.X.: Worst-case comparison of valid inequalities for the TSP. Math. Program.

**69**, 335–349 (1995)

MATHMathSciNetGoogle Scholar11.

Goemans, M.X., Bertsimas, D.J.: Survivable networks, linear programming relaxations, and the parsimonious property. Math. Program.

**60**, 145–166 (1990)

CrossRefMathSciNetGoogle Scholar12.

IBM ILOG CPLEX 12.1 (2009)

13.

McKay, B.D.: Practical graph isomorphism. Congr. Numerantium

**30**, 45–97 (1981)

MathSciNetGoogle Scholar14.

Mnich, M., Mömke, T.: Improved integrality gap upper bounds for TSP with distances one and two. CoRR abs/1312.2502 (2013)

15.

Mömke, T., Svensson, O.: Approximating graphic TSP by matchings. In: Proceedings of the 52nd Annual IEEE Symposium on Foundations of Computer Science, pp. 560–569 (2011)

16.

Mucha, M.: \(\frac{13}{9}\)-approximation for graphic TSP. Theory Comput. Syst., 1–18 (2012). A preliminary version appeared in STACS 2012

17.

Oveis Gharan, S., Saberi, A., Singh, M.: A randomized rounding approach to the traveling salesman problem. In: Proceedings of the 52nd Annual IEEE Symposium on Foundations of Computer Science, pp. 550–559 (2011)

18.

Papadimitriou, C.H., Yannakakis, M.: The traveling salesman problem with distances one and two. Math. Oper. Res.

**18**, 1–11 (1993)

CrossRefMATHMathSciNetGoogle Scholar19.

Qian, J., Schalekamp, F., Williamson, D.P., van Zuylen, A.: On the integrality gap of the subtour LP for the 1,2-TSP. In: LATIN 2012: Theoretical Informatics, 10th Latin American Symposium, Lecture Notes in Computer Science, vol. 7256, pp. 606–617 (2012)

20.

Schalekamp, F., Williamson, D.P., van Zuylen, A.: 2-matchings, the traveling salesman problem, and the subtour LP: A proof of the Boyd-Carr conjecture. Math. Oper. Res. **39**(2), 403–417 (2014). A preliminary version appeared in SODA 2012

21.

Sebő, A., Vygen, J.: Shorter tours by nicer ears: 7/5-approximation for graphic TSP, 3/2 for the path version, and 4/3 for two-edge-connected subgraphs. CoRR abs/1201.1870 (2012)

22.

Shmoys, D.B., Williamson, D.P.: Analyzing the Held–Karp TSP bound: a monotonicity property with application. Inf. Process. Lett.

**35**, 281–285 (1990)

CrossRefMATHMathSciNetGoogle Scholar23.

Williamson, D.P.: Analysis of the Held–Karp heuristic for the traveling salesman problem. Master’s thesis, MIT, Cambridge, MA (1990). Also appears as Tech Report MIT/LCS/TR-479

24.

Wolsey, L.A.: Heuristic analysis, linear programming and branch and bound. Math. Program. Study

**13**, 121–134 (1980)

CrossRefMATHMathSciNetGoogle Scholar