Mathematical Programming

, Volume 150, Issue 1, pp 153–178

Oriented Euler complexes and signed perfect matchings

Full Length Paper Series B

Abstract

This paper presents “oriented pivoting systems” as an abstract framework for complementary pivoting. It gives a unified simple proof that the endpoints of complementary pivoting paths have opposite sign. A special case are the Nash equilibria of a bimatrix game at the ends of Lemke–Howson paths, which have opposite index. For Euler complexes or “oiks”, an orientation is defined which extends the known concept of oriented abstract simplicial manifolds. Ordered “room partitions” for a family of oriented oiks come in pairs of opposite sign. For an oriented oik of even dimension, this sign property holds also for unordered room partitions. In the case of a two-dimensional oik, these are perfect matchings of an Euler graph, with the sign as defined for Pfaffian orientations of graphs. A near-linear time algorithm is given for the following problem: given a graph with an Eulerian orientation with a perfect matching, find another perfect matching of opposite sign. In contrast, the complementary pivoting algorithm for this problem may be exponential.

Keywords

Complementary pivoting Euler complex Linear complementarity problem Nash equilibrium Perfect matching  Pfaffian orientation PPAD 

Mathematics Subject Classification (2010)

90C33 

References

  1. 1.
    Balthasar, A.V.: Geometry and Equilibria in Bimatrix Games. PhD Thesis, London School of Economics (2009)Google Scholar
  2. 2.
    Casetti, M.M., Merschen, J., von Stengel, B.: Finding Gale strings. Electron. Notes Discret. Math. 36, 1065–1072 (2010)CrossRefGoogle Scholar
  3. 3.
    Cayley, A.: Sur les déterminants gauches. Journal für die reine und angewandte Mathematik (Crelle’s Journal) 38, 93–96 (1849)CrossRefMATHGoogle Scholar
  4. 4.
    Chen, X., Deng, X.: Settling the complexity of two-player Nash equilibrium. In: Proceedings of 47th FOCS, pp. 261–272 (2006)Google Scholar
  5. 5.
    Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn. MIT Press, Cambridge, MA (2001)MATHGoogle Scholar
  6. 6.
    Cottle, R.W., Dantzig, G.B.: A generalization of the linear complementarity problem. J. Comb. Theory 8, 79–90 (1970)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Cottle, R.W., Pang, J.-S., Stone, R.E.: The Linear Complementarity Problem. Academic Press, San Diego (1992)MATHGoogle Scholar
  8. 8.
    Daskalakis, C., Goldberg, P.W., Papadimitriou, C.H.: The complexity of computing a Nash equilibrium. SIAM J. Comput. 39, 195–259 (2009)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Eaves, B.C., Scarf, H.: The solution of systems of piecewise linear equations. Math. Oper. Res. 1, 1–27 (1976)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Edmonds, J.: Paths, trees, and flowers. Can. J. Math. 17, 449–467 (1965)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Edmonds, J.: Euler complexes. In: Cook, W., Lovasz, L., Vygen, J. (eds.) Research Trends in Combinatorial Optimization, pp. 65–68. Springer, Berlin (2009)CrossRefGoogle Scholar
  12. 12.
    Edmonds, J., Gaubert, S., Gurvich, V.: Sperner oiks. Electron. Notes Discret. Math. 36, 1273–1280 (2010)CrossRefGoogle Scholar
  13. 13.
    Gale, D.: Neighborly and cyclic polytopes. In: Klee, V. (ed.) Convexity, Proceedings of Symposia in Pure Math., Vol. 7, pp. 225–232. American Math. Soc., Providence, RI (1963)Google Scholar
  14. 14.
    Grigni, M.: A Sperner lemma complete for PPA. Inf. Process. Lett. 77, 255–259 (2001)CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Hilton, P.J., Wylie, S.: Homology Theory: An Introduction to Algebraic Topology. Cambridge University Press, Cambridge (1967)MATHGoogle Scholar
  16. 16.
    Jacobi, C.G.J.: Ueber die Pfaffsche Methode, eine gewöhnliche lineäre Differentialgleichung zwischen \(2n\) Variabeln durch ein System von \(n\) Gleichungen zu integriren. Journal für die reine und angewandte Mathematik (Crelle’s Journal) 2, 347–357 (1827)CrossRefMATHGoogle Scholar
  17. 17.
    Lax, P.D.: Linear Algebra and Its Applications. Wiley, Hoboken, NJ (2007)MATHGoogle Scholar
  18. 18.
    Lemke, C.E.: Bimatrix equilibrium points and mathematical programming. Manag. Sci. 11, 681–689 (1965)CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Lemke, C.E., Grotzinger, S.J.: On generalizing Shapley’s index theory to labelled pseudomanifolds. Math. Program. 10, 245–262 (1976)CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Lemke, C.E., Howson Jr, J.T.: Equilibrium points of bimatrix games. J. Soc. Ind. Appl. Math. 12, 413–423 (1964)CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    Lovász, L., Plummer, M.D.: Matching Theory. North-Holland, Amsterdam (1986)MATHGoogle Scholar
  22. 22.
    McLennan, A., Tourky, R.: Simple complexity from imitation games. Games Econ. Behav. 68, 683–688 (2010)CrossRefMATHMathSciNetGoogle Scholar
  23. 23.
    Merschen, J. : Nash Equilibria, Gale Strings, and Perfect Matchings. PhD Thesis, London School of Economics (2012)Google Scholar
  24. 24.
    Morris Jr, W.D.: Lemke paths on simple polytopes. Math. Oper. Res. 19, 780–789 (1994)CrossRefMATHMathSciNetGoogle Scholar
  25. 25.
    Papadimitriou, C.H.: On the complexity of the parity argument and other inefficient proofs of existence. J. Comput. Syst. Sci. 48, 498–532 (1994)CrossRefMATHMathSciNetGoogle Scholar
  26. 26.
    Parameswaran, S.: Skew–symmetric determinants. Am. Math. Mon. 61, 116 (1954)CrossRefMathSciNetGoogle Scholar
  27. 27.
    Robertson, N., Seymour, P.D., Thomas, R.: Permanents, Pfaffian orientations, and even directed circuits. Ann. Math. 150, 929–975 (1999)CrossRefMATHMathSciNetGoogle Scholar
  28. 28.
    Savani, R., von Stengel, B.: Hard-to-solve bimatrix games. Econometrica 74, 397–429 (2006)CrossRefMATHMathSciNetGoogle Scholar
  29. 29.
    Shapley, L.S.: A note on the Lemke–Howson algorithm. In: Mathematical Programming Study 1: Pivoting and Extensions, pp. 175–189 (1974)Google Scholar
  30. 30.
    Tarjan, R.E.: Efficiency of a good but not linear set union algorithm. J. ACM 22, 215–225 (1975)CrossRefMATHMathSciNetGoogle Scholar
  31. 31.
    Thomas, R.: A survey of Pfaffian orientations of graphs. In: Proceedings of International Congress of Mathematicians, Madrid, Spain, Vol. III, pp. 963–984. European Mathematical Society, Zürich (2006)Google Scholar
  32. 32.
    Todd, M.J.: Abstract Complementary Pivot Theory. PhD Dissertation, Yale University (1972)Google Scholar
  33. 33.
    Todd, M.J.: A generalized complementary pivot algorithm. Math. Program. 6, 243–263 (1974)CrossRefMATHMathSciNetGoogle Scholar
  34. 34.
    Todd, M.J.: Orientation in complementary pivot algorithms. Math. Oper. Res. 1, 54–66 (1976)CrossRefMATHMathSciNetGoogle Scholar
  35. 35.
    Valiant, L.G.: The complexity of computing the permanent. Theoret. Comput. Sci. 8, 189–201 (1979)CrossRefMATHMathSciNetGoogle Scholar
  36. 36.
    Vazirani, V.V., Yannakakis, M.: Pfaffian orientations, 0–1 permanents, and even cycles in directed graphs. Discret. Appl. Math. 25, 179–190 (1989)CrossRefMATHMathSciNetGoogle Scholar
  37. 37.
    Végh, L.A., von Stengel, B.: Oriented Euler complexes and signed perfect matchings. arXiv:1210.4694 (2012)
  38. 38.
    von Stengel, B.: New maximal numbers of equilibria in bimatrix games. Discret. Comput. Geom. 21, 557–568 (1999)CrossRefMATHGoogle Scholar
  39. 39.
    von Stengel, B.: Computing equilibria for two-person games. In: Aumann, R.J., Hart, S. (eds.) Handbook of Game Theory, vol. 3, pp. 1723–1759. North-Holland, Amsterdam (2002)Google Scholar
  40. 40.
    Ziegler, G.M.: Lectures on Polytopes. Springer, New York (1995)CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and Mathematical Optimization Society 2014

Authors and Affiliations

  1. 1.Department of ManagementLondon School of EconomicsLondon UK
  2. 2.Department of MathematicsLondon School of EconomicsLondon UK

Personalised recommendations