Advertisement

Mathematical Programming

, Volume 139, Issue 1–2, pp 223–242 | Cite as

Nonlinear regularity models

  • Alexander D. IoffeEmail author
Full Length Paper Series B

Abstract

The paper studies regularity properties of set-valued mappings between metric spaces. In the context of metric regularity, nonlinear models correspond to nonlinear dependencies of estimates of error bounds in terms of residuals. Among the questions addressed in the paper are equivalence of the corresponding concepts of openness and “pseudo-Hölder” behavior, general and local regularity criteria with special emphasis on “regularity of order \(k\)”, for local settings, and variational methods to extimate regularity moduli in case of length range spaces. The majority of the results presented in the paper are new.

Keywords

Metric regularity Regularity criterion Regularity of order \(k\)  Error bound Length space 

Mathematics Subject Classification (2000)

47H04 49J53 90C31 

Notes

Acknowledgments

I wish to express my thanks to the reviewers for the detailed analysis of the text and many good suggestions.

References

  1. 1.
    Ambrosio, A., Gigli, N., Savaré, G.: Gradient Flows, 2nd edn. Bürkhauser, Basel (2008)zbMATHGoogle Scholar
  2. 2.
    Azé, D., Corvellec, J.-N.: On some variational properties of metric spaces. J. Fixed Point Theory. doi: 10.1007/s11784-008-0054-9
  3. 3.
    Bonnans, J.F., Shapiro, A.: Perturbation Analysis of Optimization Problems. Springer, Berlin (2000)zbMATHGoogle Scholar
  4. 4.
    Borwein, J.M.: Stability and regular points of inequality systems. J. Optim. Theory Appl. 48, 9–51 (1986)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Borwein, J.M., Zhu, J.: Techniques of Variational Analysis, CMS Books in Mathematics, vol. 20. Springer, Berlin (2006)Google Scholar
  6. 6.
    Borwein, J.M., Zhuang, D.M.: Verifiable necessary and sufficient conditions for openness and regularity of set-valued and single-valued maps. J. Math. Anal. Appl 134, 441–459 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Burago, D., Burago, Yu., Ivanov, S.: A Course in Metric Geometry, Graduate Studies in Math, vol. 33, AMS (2001)Google Scholar
  8. 8.
    De Giorgi, E., Marino, A., Tosques, M.: Problemi di evoluzione in spazi metrici e curve di massima pendenza. Atti Acad. Nat. Lincei, Rend. Cl. Sci. Fiz. Mat. Natur. 68, 180–187 (1980)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Dmitruk, A.V., Milyutin, A.A., Osmolovskii, N.P.: Lyusternik theorem and the theory of extrema. Russian Math. Surveys 35(6), 11–51 (1980)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Frankowska, H.: An open mapping principle for set-valued maps. J. Math. Anal. Appl. 127, 172–180 (1987)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Frankowska, H.: High order inverse functions theorems. In: Attouch, H., Aubin, J.-P., Clarke, F.H., Ekeland, I. (eds.) Analyse Non Linéaire, pp. 283–304. Gauthier-Villars, Paris (1989)Google Scholar
  12. 12.
    Frankowska, H.: Some inverse mapping theorems. Ann. Inst. Henri Poincaré. Analyse Non Linéaire 7, 183–234 (1990)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Frankowska, H.: Conical inverse mapping theorems. Bull. Australian Math. Soc. 45, 53–60 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Frankowska, H., Quincampoix, M.: Hölder metric regularity of set-valued maps. Math. Programm. doi: 10.1007/s10107-010-0401-7
  15. 15.
    Hoffman, A.J.: On approximate solutions of systems of linear inequalities. J. Res. Nat. Bureau Stand. 49, 263–265 (1952)CrossRefGoogle Scholar
  16. 16.
    Ioffe, A.D.: Regular points of Lipschitz functions. Trans. Am. Math. Soc. 251, 61–69 (1979)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Ioffe, A.D.: Metric regularity and subdifferential calculus, Uspehi Mat. Nauk 55(3), 103–162 (2000) (in Russian), English translation. Russian Math. Surveys 55(3), 501–558 (2000)Google Scholar
  18. 18.
    Ioffe, A.D.: Towards metric theory of metric regularity, 501–558. In: Lassond, M. (ed.) Approximation, Optimization and Mathematical Economics, pp. 165–177. Physica Verlag, Heidelberg (2001)CrossRefGoogle Scholar
  19. 19.
    Ioffe, A.D.: On regularity estimates for mappings between embedded manifolds. Control Cybern. 36, 659–668 (2007)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Ioffe, A.D.: Regularity on fixed sets, preprint (2011)Google Scholar
  21. 21.
    Ioffe, A.D., Tikhomirov, V.M.: Theory of Extremal Problems, Nauka, Moscow (1974) (in Russian). North Holland, English translation (1979)Google Scholar
  22. 22.
    Khanh, P.Q.: An induction theorem and general open mapping theorem. J. Math. Anal. Appl. 118, 519–534 (1986)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Penot, J.-P.: Metric regularity, openness and Lipschitzean behavior of multifunctions. Nonlinear Anal. 13, 629–643 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Pták, V.: A quantitative refinement of a closed graph theorem. Czechoslovak Math. J. 24, 503–506 (1974)MathSciNetGoogle Scholar
  25. 25.
    Robinson, S.M.: Stability theory for system of inequalities. Part II: differentiable nonlinear systems. SIAM J. Numer. Anal. 13, 497–513 (1976)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Robinson, S.M.: Regularity and stability for convex multivalued functions. Math. Oper. Res. 1, 130–143 (1976)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Tziskaridze, KSh: Extremal problems in Banach spaces. In: Nekotorye Voprosy Matematicheskoy Theorii Optimalnogo Upravleniya (Some Problems of the Mathematical Theory of Optimal Control). Tbilisi State Univ, Inst. Appl. Math. (1975) (in Russian)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and Mathematical Optimization Society 2013

Authors and Affiliations

  1. 1.Department of Mathematics, TechnionHaifaIsrael

Personalised recommendations