Mathematical Programming

, Volume 136, Issue 2, pp 375–402

A storm of feasibility pumps for nonconvex MINLP

  • Claudia D’Ambrosio
  • Antonio Frangioni
  • Leo Liberti
  • Andrea Lodi
Full Length Paper Series B


One of the foremost difficulties in solving Mixed-Integer Nonlinear Programs, either with exact or heuristic methods, is to find a feasible point. We address this issue with a new feasibility pump algorithm tailored for nonconvex Mixed-Integer Nonlinear Programs. Feasibility pumps are algorithms that iterate between solving a continuous relaxation and a mixed-integer relaxation of the original problems. Such approaches currently exist in the literature for Mixed-Integer Linear Programs and convex Mixed-Integer Nonlinear Programs: both cases exhibit the distinctive property that the continuous relaxation can be solved in polynomial time. In nonconvex Mixed-Integer Nonlinear Programming such a property does not hold, and therefore special care has to be exercised in order to allow feasibility pump algorithms to rely only on local optima of the continuous relaxation. Based on a new, high level view of feasibility pump algorithms as a special case of the well-known successive projection method, we show that many possible different variants of the approach can be developed, depending on how several different (orthogonal) implementation choices are taken. A remarkable twist of feasibility pump algorithms is that, unlike most previous successive projection methods from the literature, projection is “naturally” taken in two different norms in the two different subproblems. To cope with this issue while retaining the local convergence properties of standard successive projection methods we propose the introduction of appropriate norm constraints in the subproblems; these actually seem to significantly improve the practical performance of the approach. We present extensive computational results on the MINLPLib, showing the effectiveness and efficiency of our algorithm.


Feasibility pump MINLP Global optimization Nonconvex NLP 

Mathematics Subject Classification

90C11 Mixed integer programming 90C26 Nonconvex programming, global optimization 90C59 Approximation methods and heuristics 


  1. 1.
    Achterberg, T., Berthold, T.: Improving the feasibility pump. Discrete Opt. 4, 77–86 (2007)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Al-Khayyal, F.A., Sherali, H.D.: On finitely terminating branch-and-bound algorithms for some global optimization problems. SIAM J. Opt. 10, 1049–1057 (2000)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Attouch, H., Bolte, J., Redont, P., Soubeyran, A.: Proximal Alternating Minimization and Projection Methods for Nonconvex Problems: An Approach Based on the Kurdyka-Lojasiewicz Inequality. Math. Oper. Res. 35, 438–457 (2010)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Balas, E., Jeroslow, R.: Canonical cuts on the unit hypercube. SIAM J. Appl. Math. 23, 61–69 (1972)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Bauschke, H.H., Borwein, J.M.: On projection algorithms for solving convex feasibility problems. SIAM Rev. 38, 367–426 (1996)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Belotti, P., Lee, J., Liberti, L., Margot, F., Wächter, A.: Branching and bound tightening techniques for non-convex MINLP. Opt. Methods Softw. 24, 597–634 (2009)MATHCrossRefGoogle Scholar
  7. 7.
    Berthold, T., Gleixner, A.: Undercover primal MINLP heuristic. In: Bonami, P., Liberti, L., Miller, A., Sartenaer, A. (eds.) Proceedings of the European Workshop on Mixed-Integer Nonlinear Programming, pp. 103–113. Université de la Méditerranée, Marseille (2010)Google Scholar
  8. 8.
    Bonami, P., Cornuéjols, G., Lodi, A., Margot, F.: A feasibility pump for mixed integer nonlinear programs. Math. Prog. 119, 331–352 (2009)Google Scholar
  9. 9.
    Bonami, P., Gonçalves, J.: Primal heuristics for mixed integer nonlinear programs. Technical report, IBM (2008)Google Scholar
  10. 10.
    Bonami, P., Lee, J.: BONMIN user’s manual. IBM Corporation, Technical report (June 2007)Google Scholar
  11. 11.
    Bruglieri, M., Liberti, L.: Optimal running and planning of a biomass-based energy production process. Energy Policy 36, 2430–2438 (2008)CrossRefGoogle Scholar
  12. 12.
    Bussieck, M.R., Drud, A.S., Meeraus, A.: MINLPLib—a collection of test models for mixed-integer nonlinear programming. INFORMS J. Comput. 15, 114–119 (2003)Google Scholar
  13. 13.
    COIN-OR. Introduction to IPOPT: a tutorial for downloading, installing, and using IPOPT (2006)Google Scholar
  14. 14.
  15. 15.
    D’Ambrosio, C.: Application-oriented Mixed Integer Non-Linear Programming. PhD thesis, DEIS, Università di Bologna (2009)Google Scholar
  16. 16.
    D’Ambrosio, C., Frangioni, A., Liberti, L., Lodi, A.: Experiments with a feasibility pump approach for nonconvex MINLPs. In: Festa, P. (ed.) Symposium on Experimental Algorithms, volume 6049 of LNCS, pp. 350–360. Springer, Heidelberg (2010)Google Scholar
  17. 17.
    D’Ambrosio, C., Frangioni, A., Liberti, L., Lodi, A.: On interval-subgradient cuts and no-good cuts. Oper. Res. Lett. 38, 341–345 (2010)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    d’Antonio, G., Frangioni, A.: Convergence analysis of deflected conditional approximate subgradient methods. SIAM J. Opt. 20, 357–386 (2009)MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Duran, M., Grossmann, I.: An outer-approximation algorithm for a class of mixed-integer nonlinear programs. Math. Prog. 36, 307–339 (1986)MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Fischetti, M., Glover, F., Lodi, A.: The feasibility pump. Math. Prog. 104, 91–104 (2005)MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Fletcher, R., Leyffer, S.: Solving mixed integer nonlinear programs by outer approximation. Math. Prog. 66, 327–349 (1994)MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Fourer, R., Gay, D., Kernighan, B.: AMPL: A Modeling Language for Mathematical Programming, 2nd edn. Duxbury Press, Brooks, Cole Publishing Co., Florence, KY (2003)Google Scholar
  23. 23.
    Grippo, L., Sciandrone, M.: On the convergence of the block nonlinear Gauss-Seidel method under convex constraints. Oper. Res. Lett. 26, 127–136 (2000)MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Hansen, P., Mladenović, N.: Variable neighbourhood search: principles and applications. Eur. J. Oper. Res. 130, 449–467 (2001)Google Scholar
  25. 25.
    ILOG. ILOG CPLEX 11.0 User’s Manual. ILOG S.A., Gentilly, France (2008)Google Scholar
  26. 26.
    Liberti, L.: Writing global optimization software. In: Liberti, L., Maculan, N. (eds.) Global Optimization: From Theory to Implementation, pp. 211–262. Springer, Berlin (2006)Google Scholar
  27. 27.
    Liberti, L., Cafieri, S., Savourey, D.: Reformulation Optimization Software Engine. In: Fukuda, K., van der Hoeven, J., Joswig, M., Takayama, N. (eds.) Mathematical Software, vol. 6327, pp. 303–314. LNCS Springer, New York (2010)Google Scholar
  28. 28.
    Liberti, L., Cafieri, S., Tarissan, F.: Reformulations in mathematical programming: A computational approach. In: Abraham, A., Hassanien, A.-E., Siarry, P., Engelbrecht, A. (eds.) Foundations of Computational Intelligence, vol. 3, pp. 153–234. Studies in Computational Intelligence, Springer, Berlin (2009)Google Scholar
  29. 29.
    Liberti, L., Dražic, M.: Variable neighbourhood search for the global optimization of constrained NLPs. In: Proceedings of GO Workshop, Almeria, Spain (2005)Google Scholar
  30. 30.
    Liberti, L., Mladenović, N., Nannicini, G.: A good recipe for solving MINLPs. In: Maniezzo, V., Stützle, T., Voß, S. (eds.) Hybridizing metaheuristics and mathematical programming, vol. 10, pp. 231–244. Annals of Information Systems, Springer, New York (2009)Google Scholar
  31. 31.
    Nannicini, G., Belotti, P.: Local branching for MINLPs. Technical report, CMU (2009)Google Scholar
  32. 32.
    Nannicini, G., Belotti, P.: Rounding-based heuristics for nonconvex MINLPs. Technical report, CMU (2009)Google Scholar
  33. 33.
    Schoen, F.: Two-phase methods for global optimization. In: Pardalos, P.M., Romeijn, H.E. (eds.) Handbook of Global Optimization, vol. 2, pp. 151–177. Kluwer, Dordrecht (2002)Google Scholar
  34. 34.
    Tseng, P.: Convergence of a block coordinate descent method for nondifferentiable minimization. J. Opt. Theory Appl. 109, 475–494 (2001)Google Scholar
  35. 35.
    Tuy, H.: Convex Analysis and Global Optimization. Kluwer, Dordrecht (1998)MATHGoogle Scholar
  36. 36.
    Vavasis, S.A.: Nonlinear Optimization: Complexity Issues. Oxford University Press, Oxford (1991)MATHGoogle Scholar
  37. 37.
    von Neumann, J.: Functional Operators, Vol. II. Princeton University Press, Princeton (1950)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and Mathematical Optimization Society 2012

Authors and Affiliations

  • Claudia D’Ambrosio
    • 1
  • Antonio Frangioni
    • 2
  • Leo Liberti
    • 1
  • Andrea Lodi
    • 3
  1. 1.LIXEcole PolytechniqueParisFrance
  2. 2.Dipartimento di InformaticaUniversità di PisaPisaItaly
  3. 3.DEIUniversitá di BolognaBolognaItaly

Personalised recommendations