Mathematical Programming

, Volume 143, Issue 1–2, pp 147–176 | Cite as

Chain rules for linear openness in metric spaces and applications

Full Length Paper Series A

Abstract

In this work we present a general theorem concerning chain rules for linear openness of set-valued mappings acting between metric spaces. As particular cases, we obtain classical and also some new results in this field of research, including the celebrated Lyusternik–Graves Theorem. The applications deal with the study of the well-posedness of the solution mappings associated to parametric systems. Sharp estimates for the involved regularity moduli are given.

Keywords

Composition of set-valued mappings Linear openness   Metric regularity Aubin property Implicit multifunctions  Local composition-stability Parametric systems 

Mathematics Subject Classification (2010)

47J22 49K40 90C31 

References

  1. 1.
    Artacho Aragón, F.J., Mordukhovich, B.S.: Metric regularity and Lipschitzian stability of parametric variational systems. Nonlinear Anal 72, 1149–1170 (2010)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Artacho Aragón, F.J., Mordukhovich, B.S.: Enhanced metric regularity and Lipschitzian properties of variational systems. J. Glob. Optim. 50, 145–167 (2011)CrossRefMATHGoogle Scholar
  3. 3.
    Arutyunov, A.V.: Covering mapping in metric spaces, and fixed points. Dokl. Math. 76, 665–668 (2007)CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Arutyunov, A.V.: Stability of coincidence points and properties of covering mappings. Math. Notes 86, 153–158 (2009)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Arutyunov, A., Avakov, E., Gel’man, B., Dmitruk, A., Obukhovskii, V.: Locally covering maps in metric spaces and coincidence points. J. Fixed Points Theory Appl. 5, 105–127 (2009)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Azé, D.: A unified theory for metric regularity of multifunctions. J. Convex Anal. 13, 225–252 (2006)MATHMathSciNetGoogle Scholar
  7. 7.
    Borwein, J.M., Zhu, Q.J.: Techniques of Variational Analysis. Springer, New York (2005)MATHGoogle Scholar
  8. 8.
    Borwein, J.M., Zhuang, D.M.: Verifiable necessary and sufficientconditions for openness and regularity of set-valued and single-valued maps. J. Math. Anal. Appl. 134, 441–459 (1988)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    DoCarmo, M.P.: Riemannian Geometry. Birkhauser, Boston (1992)Google Scholar
  10. 10.
    Dmitruk, A.V.: On a nonlocal metric regularity of nonlinear operators. Control Cybern. 34, 723–746 (2005)MATHMathSciNetGoogle Scholar
  11. 11.
    Dmitruk, A.V., Milyutin, A.A., Osmolovskii, N.P.: Lyusternik’s theorem and the theory of extrema. Uspekhi Mat. Nauk 35, 11–46 (1980)MathSciNetGoogle Scholar
  12. 12.
    Dontchev, A.L., Frankowska, H.: Lyusternik-Graves theorem and fixed points. Proc. Am. Math. Soc. 139, 521–534 (2011)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Dontchev, A.L., Frankowska, H.: Lyusternik-Graves theorem and fixed points II. J. Convex Anal. (appeared online)Google Scholar
  14. 14.
    Dontchev, A.L., Lewis, A.S.: Perturbations and metric regularity. Set Valued Anal. 13, 417–438 (2005)CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Dontchev, A.L., Lewis, A.S., Rockafellar, R.T.: The radius of metric regularity. Trans. Am. Math. Soc. 355, 493–517 (2003)CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Dontchev, A.L., Quincampoix, M., Zlateva, N.: Aubin criterion for metric regularity. J. Convex Anal. 13, 281–297 (2006)MATHMathSciNetGoogle Scholar
  17. 17.
    Dontchev, A.L., Rockafellar, R.T.: Robinson’s implicit function theorem and its extensions. Math. Program. Ser. B 117, 129–147 (2009)CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Dontchev, A.L., Rockafellar, R.T.: Implicit Functions and Solution Mappings. Springer, Berlin (2009)CrossRefMATHGoogle Scholar
  19. 19.
    Durea, M., Strugariu, R.: On some Fermat rules for set-valued optimization problems. Optimization 60, 575–591 (2011)CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Durea, M., Strugariu, R.: Existence conditions for generalized vector variational inequalities. Ann. Oper. Res. 191, 255–262 (2011)CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    Durea, M., Strugariu, R.: Openness stability and implicit multifunction theorems: Applications to variational systems. Nonlinear Anal. Theory Methods Appl. 75, 1246–1259 (2012)CrossRefMATHMathSciNetGoogle Scholar
  22. 22.
    Durea, M., Strugariu, R.: Chain rules for linear openness in general Banach spaces. SIAM J. Optim. 22, 899–913 (2012)Google Scholar
  23. 23.
    Frankowska, H.: Some inverse mapping theorems. Annales de l’Institut Henri Poincaré, Analyse Non Linéaire 7, 183–234 (1990)MATHMathSciNetGoogle Scholar
  24. 24.
    Frankowska, H.: Conical inverse mapping theorems. Bull. Aust. Math. Soc. 45, 53–60 (1992)CrossRefMATHMathSciNetGoogle Scholar
  25. 25.
    Graves, L.M.: Some mapping theorems. Duke Math. J. 17, 111–114 (1950)CrossRefMATHMathSciNetGoogle Scholar
  26. 26.
    Ioffe A.D.: Metric regularity and subdifferential calculus. Uspekhi Mat. Nauk, 55 3 (333), 103–162 (2000); English translation in Math. Surv. 55, 501–558 (2000)Google Scholar
  27. 27.
    Ioffe, A.D.: Towards variational analysis in metric spaces: metric regularity and fixed points. Math. Program. Ser. B 123, 241–252 (2010)CrossRefMATHMathSciNetGoogle Scholar
  28. 28.
    Ioffe, A.D.: Regularity on a fixed set. SIAM J. Optim. 21, 1345–1370 (2011)CrossRefMATHMathSciNetGoogle Scholar
  29. 29.
    Klatte, D., Kummer, B.: Nonsmooth Equations in Optimization. Regularity, Calculus, Methods and Applications. Nonconvex Optimization and its Applications, 60, Kluwer Academic Publishers, Dordrecht (2002)Google Scholar
  30. 30.
    Lyusternik, L.A.: On the conditional extrema of functionals. Mat. Sbornik 41, 390–401 (1934)MATHGoogle Scholar
  31. 31.
    Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation. Vol. I: Basic Theory, Vol. II: Applications, Springer, Grundlehren der mathematischen Wissenschaften (A Series of Comprehensive Studies in Mathematics), vol. 330 and 331, Berlin (2006)Google Scholar
  32. 32.
    Ngai, H.V., Nguyen, H.T., Théra, M.: Implicit multifunction theorems in complete metric spaces. Math. Program. Ser. B (accepted)Google Scholar
  33. 33.
    Ngai, H.V., Nguyen, H.T., Théra, M.: Metric regularity of the sum of multifunctions and applications. Available at http://www.optimization-online.org/DB_HTML/2011/12/3291.html
  34. 34.
    Ngai, H.V., Théra, M.: Error bounds in metric spaces and application to the perturbation stability of metric regularity. SIAM J. Optim. 19, 1–20 (2008)CrossRefMATHMathSciNetGoogle Scholar
  35. 35.
    Penot, J.-P.: Metric regularity, openness and Lipschitzian behavior of multifunctions. Nonlinear Anal. 13, 629–643 (1989)CrossRefMATHMathSciNetGoogle Scholar
  36. 36.
    Robinson, S.M.: Regularity and stability for convex multivalued functions. Math. Oper. Res. 1, 130–143 (1976)CrossRefMATHMathSciNetGoogle Scholar
  37. 37.
    Robinson, S.M.: Strongly regular generalized equations. Math. Oper. Res. 5, 43–62 (1980)CrossRefMATHMathSciNetGoogle Scholar
  38. 38.
    Rockafellar, R.T., Wets, R.: Variational Analysis. Springer, Grundlehren der mathematischen Wissenschaften. (A Series of Comprehensive Studies in Mathematics), vol. 317. Berlin (1998)Google Scholar
  39. 39.
    Ursescu, C.: Multifunctions with closed convex graph. Czech. Math. J. 25, 438–441 (1975)MathSciNetGoogle Scholar
  40. 40.
    Ursescu, C.: Inherited openness. Revue Roumaine des Mathématiques Pures et Appliquées 41(5–6), 401–416 (1996)MATHMathSciNetGoogle Scholar
  41. 41.
    Yen, N.D., Yao, J.C., Kien, B.T.: Covering properties at positive order rates of multifunctions and some related topics. J. Math. Anal. Appl. 338, 467–478 (2008)CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and Mathematical Optimization Society 2012

Authors and Affiliations

  1. 1.Faculty of Mathematics“Al. I. Cuza” UniversityIasiRomania
  2. 2.Department of Mathematics“Gh. Asachi” Technical UniversityIasiRomania

Personalised recommendations