Mathematical Programming

, Volume 142, Issue 1–2, pp 47–82 | Cite as

Simultaneous column-and-row generation for large-scale linear programs with column-dependent-rows

  • İbrahim Muter
  • Ş. İlker Birbil
  • Kerem Bülbül
Full Length Paper Series A


In this paper, we develop a simultaneous column-and-row generation algorithm that could be applied to a general class of large-scale linear programming problems. These problems typically arise in the context of linear programming formulations with exponentially many variables. The defining property for these formulations is a set of linking constraints, which are either too many to be included in the formulation directly, or the full set of linking constraints can only be identified, if all variables are generated explicitly. Due to this dependence between columns and rows, we refer to this class of linear programs as problems with column-dependent-rows. To solve these problems, we need to be able to generate both columns and rows on-the-fly within an efficient solution approach. We emphasize that the generated rows are structural constraints and distinguish our work from the branch-and-cut-and-price framework. We first characterize the underlying assumptions for the proposed column-and-row generation algorithm. These assumptions are general enough and cover all problems with column-dependent-rows studied in the literature up until now to the best of our knowledge. We then introduce in detail a set of pricing subproblems, which are used within the proposed column-and-row generation algorithm. This is followed by a formal discussion on the optimality of the algorithm. To illustrate our approach, the paper is concluded by applying the proposed framework to the multi-stage cutting stock and the quadratic set covering problems.


Linear programming Column generation Column-and-row generation Row-and-column generation Pricing subproblem Multi-stage cutting stock Quadratic set covering Column-dependent-rows 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Akker J.M.V.D., Hoogeveen J.A., Velde S.L.V.D.: Parallel machine scheduling by column generation. Oper. Res. 47(6), 862–872 (1999)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Avella P., D’ Auria B., Salerno S.: A LP-based heuristic for a time-constrained routing problem. Eur. J. Oper. Res. 173(1), 120–124 (2006)CrossRefMATHGoogle Scholar
  3. 3.
    Avella P., Sassano A., Vasilev I.: Computational study of large-scale p-median problems. Math. Program. 109(1), 89–114 (2007)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Barahona F., Jensen D.: Plant location with minimum inventory. Math. Program. 83(1–3), 101–111 (1998)MathSciNetMATHGoogle Scholar
  5. 5.
    Bazaraa M., Goode J.: A cutting-plane algorithm for the quadratic set-covering problem. Oper. Res. 23(1), 150–158 (1975)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Dantzig G., Wolfe P.: Decomposition principle for linear programs. Oper. Res. 8(1), 101–111 (1960)CrossRefMATHGoogle Scholar
  7. 7.
    Desaulniers G., Desrosiers J., Dumas Y., Marc S., Rioux B., Solomon M., Soumis F.: Crew pairing at Air France. Eur. J. Oper. Res. 97(2), 245–259 (1997)CrossRefMATHGoogle Scholar
  8. 8.
    Desaulniers G., Desrosiers J., Solomon M.: Column Generation. Springer, New York (2005)CrossRefMATHGoogle Scholar
  9. 9.
    Desaulniers G., Desrosiers J., Spoorendonk S.: Cutting planes for branch-and-price algorithms. Networks 58(4), 301–310 (2011)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Desrochers M., Desrosiers J., Solomon M.: A new optimization algorithm for the vehicle routing problem with time windows. Oper. Res. 40(2), 342–354 (1992)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Desrosiers, J., Lüe, M.E.: Branch-price-and-cut algorithms. In: Cochran, J.J. (ed.) Wiley encyclopedia of operations research and management science (EORMS). Wiley, London. doi: 10.1002/9780470400531.eorms0118 (2011)
  12. 12.
    Feillet D., Gendreau M., Medaglia A.L., Walteros J.L.: A note on branch-and-cut-and-price. Oper. Res. Lett. 38(5), 346–353 (2010)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Ferreira J., Neves M., Castro P.: A two-phase roll cutting problem. Eur. J. Oper. Res. 44(2), 185–196 (1990)CrossRefMATHGoogle Scholar
  14. 14.
    Frangioni A., Gendron B.: 0-1 reformulations of the multicommodity capacitated network design problem. Discret. Appl. Math. 157(6), 1229–1241 (2009)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Frangioni, A., Gendron, B.: A Stabilized Structured Dantzig–Wolfe Decomposition Method. Technical Report CIRRELT-2010-02, CIRRELT (2010)Google Scholar
  16. 16.
    Gamache M., Soumis F., Marquis G., Desrosiers J.: A column generation approach for large-scale aircrew rostering problems. Oper. Res. 47(2), 247–263 (1999)CrossRefMATHGoogle Scholar
  17. 17.
    Gilmore P.C., Gomory R.E.: A linear programming approach to the cutting-stock problem. Oper. Res. 9(6), 849–859 (1961)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Haessler R.: A heuristic programming solution to a nonlinear cutting stock problem. Manag. Sci. 17(12), 793–802 (1971)CrossRefGoogle Scholar
  19. 19.
    Katayama N., Chen M., Kubo M.: A capacity scaling heuristic for the multicommodity capacitated network design problem. J. Comput. Appl. Math. 232(1), 90–101 (2009)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Lübbecke M.E., Desrosiers J.: Selected topics in column generation. Oper. Res. 53(6), 1007–1023 (2005)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Muter, I.: Simultaneous Column-and-Row Generation. PhD thesis, Sabanci University, Turkey (2011)Google Scholar
  22. 22.
    Muter, I., Birbil, S.I., Bulbul, K., Sahin, G.: A Note on a LP-Based Heuristic for a Time-Constrained Routing Problem. Technical Report SU_FENS_2010/0005, Sabancı University, Istanbul. (2010a)
  23. 23.
    Muter, I., Birbil, S.I., Bulbul, K., Sahin, G., Tas, D., Tuzun, D., Yenigun, H.: Solving a robust airline crew pairing problem with column generation. Comput. Oper. Res. (2010b, to appear). doi: 10.1016/j.cor.2010.11.005
  24. 24.
    Sadykov, R., Vanderbeck, F.: Column generation for extended formulations. In: Electronic Notes in Discrete Mathematics, 6th Latin-American Algorithms, Graphs and Optimization Symposium (LAGOS’11), vol. 37, pp. 357–362. Bariloche (2011a)Google Scholar
  25. 25.
    Sadykov, R., Vanderbeck, F.: Column Generation for Extended Formulations. Submitted for publication (2011b)Google Scholar
  26. 26.
    Savelsbergh M.: A branch-and-price algorithm for the generalized assignment problem. Oper. Res. 45(6), 831–841 (1997)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Saxena R., Arora S.: A linearization technique for solving the quadratic set covering problem. Optimization 39(1), 33–42 (1997)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Vanderbeck F.: Computational study of a column generation algorithm for bin packing and cutting stock problems. Math. Program. 86(3), 565–594 (1999)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Wang G., Tang L.: A row-and-column generation method to a batch machine scheduling problem. In: Proceedings of the Ninth International Symposium on Operations Research and its Applications (ISORA-10), pp. 301–308. Chengdu-Jiuzhaigou, China (2010)Google Scholar
  30. 30.
    Zak E.: Modeling multistage cutting stock problems. Eur. J. Oper. Res. 141(2), 313–327 (2002)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Zak E.: Row and column generation technique for a multistage cutting stock problem. Comput. Oper. Res. 29(9), 1143–1156 (2002)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer and Mathematical Optimization Society 2012

Authors and Affiliations

  • İbrahim Muter
    • 1
  • Ş. İlker Birbil
    • 1
  • Kerem Bülbül
    • 1
  1. 1.Manufacturing Systems and Industrial EngineeringSabancıUniversityIstanbulTurkey

Personalised recommendations