Mathematical Programming

, Volume 136, Issue 1, pp 183–207

The adaptive convexification algorithm for semi-infinite programming with arbitrary index sets

Full Length Paper Series B

Abstract

A numerical solution method for semi-infinite optimization problems with arbitrary, not necessarily box-shaped, index sets is presented. Following the ideas of Floudas and Stein (SIAM J Optim 18:1187–1208, 2007), convex relaxations of the lower level problem are adaptively constructed and then reformulated as mathematical programs with complementarity constraints and solved. Although the index set is arbitrary, this approximation produces feasible iterates for the original problem. The convex relaxations and needed parameters are constructed with ideas of the αBB method of global optimization and interval methods. It is shown that after finitely many steps an \({\epsilon}\)-stationary point of the original semi-infinite problem is reached. A numerical example illustrates the performance of the proposed method.

Keywords

Semi-infinite programming αBB Global optimization Convex optimization Mathematical programming with complementarity constraints Bilevel optimization 

Mathematics Subject Classification

90C34 90C33 90C26 65K05 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adjiman C.S., Androulakis I.P., Floudas C.A.: A global optimization method, αBB, for general twice-differentiable constrained NLPs—I: theoretical advances. Comput. Chem. Eng. 22, 1137–1158 (1998)CrossRefGoogle Scholar
  2. 2.
    Adjiman C.S., Androulakis I.P., Floudas C.A.: A global optimization method, αBB, for general twice-differentiable constrained NLPs—II: implementation and computational results. Comput. Chem. Eng. 22, 1159–1179 (1998)CrossRefGoogle Scholar
  3. 3.
    Akrotirianakis I.G., Floudas C.A.: A new class of improved convex underestimators for twice continuously differentiable constrained NLPs. J. Glob. Optim. 30, 367–390 (2004)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Bhattacharjee B., Green W.H., Barton P.I.: Interval methods for semi-infinite programs. Comput. Optim. Appl. 30, 63–93 (2005)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Bhattacharjee B., Lemonidis P., Green W.H., Barton P.I.: Global solution of semi-infinite programs. Math. Program 103, 283–307 (2005)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Demiguel V., Friedlander M.P., Nogales F.J., Scholtes S.: A two-sided relaxation scheme for mathematical programs with equilibrium constraints. SIAM J. Optim. 16, 587–609 (2005)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Floudas C.A.: Deterministic Global Optimization, Theory, Methods and Applications. Kluwer, Dordrecht (2000)Google Scholar
  8. 8.
    Floudas C.A., Gounaris C.E.: Tight convex underestimators for C 2-continuous functions: I. Univariate functions. J. Glob. Optim. 42, 51–67 (2008)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Floudas C.A., Gounaris C.E.: Tight convex underestimators for C 2-continuous problems: II. Multivariate functions. J. Glob. Optim. 42, 69–89 (2008)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Floudas C., Stein O.: The adaptive convexification algorithm: a feasible point method for semi-infinite programming. SIAM J. Optim. 18, 1187–1208 (2007)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Graettinger T.J., Krogh B.H.: The acceleration radius: a global performance measure for robotic manipulators. IEEE J. Robot. Autom. 4, 60–69 (1988)CrossRefGoogle Scholar
  12. 12.
    Gritzmann P., Klee V.: On the complexity of some basic problems in computational convexity. I. Containment problems. Discr. Math. 136, 129–174 (1994)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Hansen E.: Global Optimization using Interval Analysis. Marcel Dekker, New York (1992)MATHGoogle Scholar
  14. 14.
    Hettich R., Kortanek K.: Semi-infinite programming: theory, methods and applications. SIAM Rev. 35, 380–429 (1993)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Hettich R., Still G.: Semi-infinite programming models in robotics. In: Guddat, J., Jongen, H.Th., Kummer, B., Nožička, F. (eds.) Parametric Optimization and Related Topics II., pp. 112–118. Akademie Verlag, Berlin (1991)Google Scholar
  16. 16.
    Hettich R., Zencke P.: Numerische methoden der approximation und semi-infiniten optimierung. Teubner, Stuttgart (1982)MATHGoogle Scholar
  17. 17.
    John F.: Extremum problems with inequalities as subsidiary conditions. In: Studies and Essays, R. Courant Anniversary Volume, pp. 187–204. Interscience, New York (1948)Google Scholar
  18. 18.
    Lemonidis, P.: Global optimization algorithms for semi-infinite and generalized semi-infinite programs. PhD Thesis, Massachusetts Institute of Technology (2007)Google Scholar
  19. 19.
    Mitsos A., Lemonidis P., Barton P.I.: Global solution of bilevel programs with a nonconvex inner program. J. Glob. Optim. 42, 475–513 (2008)MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Mitsos A., Lemonidis P., Lee C.K., Barton P.I.: Relaxation-based bounds for semi-infinite programs. SIAM J. Optim. 19, 77–113 (2007)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Neumaier A.: Interval Methods for Systems of Equations. Cambridge University Press, Cambridge (1990)MATHGoogle Scholar
  22. 22.
    Nguyen V.H., Strodiot J.J.: Computing a global optimal solution to a design centering problem. Math. Program 53, 111–123 (1992)MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Pang J.-S.: Error bounds in mathematical programming. Math. Progam 79, 299–332 (1997)MATHGoogle Scholar
  24. 24.
    Polak E.: On the mathematical foundation of nondifferentiable optimization in engineering design. SIAM Rev. 29, 21–89 (1987)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Polak E.: Optimization Algorithms and Consistent Approximations. Springer, Berlin (1997)MATHGoogle Scholar
  26. 26.
    Reemtsen, R., Görner, S.: In: Reemtsen, R., Rückmann, J. (eds.) Numerical Methods for Semi-Infinite Programming: A survey in Semi-Infinite Programming pp. 195–275. Kluwer, Boston (1998)Google Scholar
  27. 27.
    Rump, S.M.: INTLAB—INTerval LABoratory, Institute for Reliable Computing, Hamburg University of Technology, Hamburg (2008). http://www.ti3.tu-harburg.de/rump/intlab
  28. 28.
    Scholtes S.: Convergence properties of a regularization scheme for mathematical programs with complementarity constraints. SIAM J. Optim. 11, 918–936 (2001)MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    Stein O.: Bi-level strategies in semi-infinite programming. Kluwer, Boston (2003)MATHGoogle Scholar
  30. 30.
    Stein O.: Lifting mathematical programs with complementarity constraints. Math. Program. 131, 71–94 (2012)MathSciNetMATHCrossRefGoogle Scholar
  31. 31.
    Stein O., Still G.: On generalized semi-infinite optimization and bilevel optimization. Eur. J. Oper. Res. 142, 444–462 (2002)MathSciNetMATHCrossRefGoogle Scholar
  32. 32.
    Wächter A., Biegler L.T.: Line Search filter methods for nonlinear programming: motivation and global convergence. SIAM J. Optim. 16, 1–31 (2005)MathSciNetMATHCrossRefGoogle Scholar
  33. 33.
    Wächter A., Biegler L.T.: Line search filter methods for nonlinear programming: local convergence. SIAM J. Optim. 16, 32–48 (2005)MathSciNetMATHCrossRefGoogle Scholar
  34. 34.
    Winterfeld, A.: Maximizing volumes of lapidaries by use of hierarchical GSIP-models. Diploma thesis, Technische Universität Kaiserslautern and Fraunhofer Institut für Techno- und Wirtschaftsmathematik (2004)Google Scholar

Copyright information

© Springer and Mathematical Optimization Society 2012

Authors and Affiliations

  1. 1.Karlsruhe Institute of Technology (KIT)KarlsruheGermany

Personalised recommendations