Mathematical Programming

, Volume 134, Issue 1, pp 5–22

Semidefinite optimization in discrepancy theory

Open Access
Full Length Paper Series B

Abstract

Recently, there have been several new developments in discrepancy theory based on connections to semidefinite programming. This connection has been useful in several ways. It gives efficient polynomial time algorithms for several problems for which only non-constructive results were previously known. It also leads to several new structural results in discrepancy itself, such as tightness of the so-called determinant lower bound, improved bounds on the discrepancy of the union of set systems and so on. We will give a brief survey of these results, focussing on the main ideas and the techniques involved.

Keywords

Semidefinite optimization Discrepancy theory Rounding error Algorithms 

Mathematics Subject Classification

90 05 

References

  1. 1.
    Alon N., Spencer J.H.: The Probabilistic Method. 2nd edn. Wiley, New York (2000)MATHCrossRefGoogle Scholar
  2. 2.
    Banaszczyk W.: Balancing vectors and gaussian measures of n-dimensional convex bodies. Random Struct. Algorithms 12(4), 351–360 (1998)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Bansal, N.: Constructive algorithms for discrepancy minimization. In: Foundations of Computer Science (FOCS), pp. 3–10 (2010)Google Scholar
  4. 4.
    Bansal, N., Spencer, J.: Deterministic discrepancy minimization. In: ESA, pp. 408–420 (2011)Google Scholar
  5. 5.
    Beck J.: Roth’s estimate on the discrepancy of integer sequences is nearly sharp. Combinatorica 1, 319–325 (1981)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Beck J., Fiala T.: Integer-making theorems. Discret. Appl. Math. 3, 1–8 (1981)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Bednarchak D., Helm M.: A note on the beck-fiala theorem. Combinatorica 17, 147–149 (1997)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Chandrasekaran, K., Vempala, S.: A discrepancy based approach to integer programming. Arxiv 1111.4649 (2011)Google Scholar
  9. 9.
    Charikar, M., Newman, A., Nikolov, A.: Tight hardness results for minimizing discrepancy. In: Proceedings of the 22nd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA) (2011)Google Scholar
  10. 10.
    Chazelle B.: The Discrepancy Method: Randomness and Complexity. Cambridge University Press, Cambridge (2001)Google Scholar
  11. 11.
    Doerr B.: Linear and hereditary discrepancy. Combin. Probab. Comput. 9(4), 349–354 (2000)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Drmota M., Tichy R.F.: Sequences, Discrepancies and Applications. Springer, Berlin (1997)MATHGoogle Scholar
  13. 13.
    Eisenbrand, F., Pálvölgyi, D., Rothvoss, T.: Bin packing via discrepancy of permutations. In: Symposium on Discrete Algorithms (SODA), pp. 476–481 (2011)Google Scholar
  14. 14.
    Gärtner B., Matoušek J.: Approximation Algorithms and Semidefinite Programming. Springer, Berlin (2012)MATHCrossRefGoogle Scholar
  15. 15.
    Ghouila-Houri A.: Caracterisation des matrices totalement unimodularies. Comptes Rendus Hebdomadaires des Seances de l’Academie des Sciences 254, 1191–1194 (1962)Google Scholar
  16. 16.
    Haxell P.: A condition for matchability in hypergraphs. Graphs Combin. 11, 245–248 (1995)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Kim J.H., Matoušek J., Vu V.: Discrepancy after adding a single set. Combinatorica 25(4), 499–501 (2005)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Lovász L., Spencer J., Vesztergombi K.: Discrepancy of set-systems and matrices. Eur. J. Combin. 7, 151–160 (1986)MATHGoogle Scholar
  19. 19.
    Matoušek, J.: The determinant bound for discrepancy is almost tight. Manuscript, Arxiv 1101:0767Google Scholar
  20. 20.
    Matoušek J.: An lp version of the beck-fiala conjecture. Eur. J. Combin. 19, 175–182 (1998)MATHCrossRefGoogle Scholar
  21. 21.
    Matoušek J.: Geometric Discrepancy: An Illustrated Guide. Springer, Berlin (2010)MATHCrossRefGoogle Scholar
  22. 22.
    Moser, R.A.: A constructive proof of the lovász local lemma. In: Symposium on Theory of Computering (STOC), pp. 343–350 (2009)Google Scholar
  23. 23.
    Newman, A., Nikolov, A.: A counterexample to beck’s conjecture on the discrepancy of three permutations. Arxiv 1104.2922 (2011)Google Scholar
  24. 24.
    Pálvölgyi D.: Indecomposable coverings with concave polygons. Discret. Comput. Geom. 44, 577–588 (2010)MATHCrossRefGoogle Scholar
  25. 25.
    Rothvoss, T.: The entropy rounding method in approximation algorithms. In: Symposium on Discrete Algorithms (SODA), pp. 356–372 (2012)Google Scholar
  26. 26.
    Spencer J.: Six standard deviations suffice. Trans. Am. Math. Soc. 289(2), 679–706 (1985)MATHCrossRefGoogle Scholar
  27. 27.
    Srinivasan, A.: Improving the discrepancy bound for sparse matrices: better approximations for sparse lattice approximation problems. In: Symposium on Discrete Algorithms (SODA), pp. 692–701 (1997)Google Scholar
  28. 28.
    Vandenberghe L., Boyd S.: Semidefinite programming. SIAM Rev. 38, 49–95 (1996)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© The Author(s) 2012

Authors and Affiliations

  1. 1.Eindhoven University of TechnologyEindhovenThe Netherlands

Personalised recommendations