Mathematical Programming

, Volume 138, Issue 1–2, pp 309–332 | Cite as

Solving bilevel programs with the KKT-approach

Open Access
Full Length Paper Series A

Abstract

Bilevel programs (BL) form a special class of optimization problems. They appear in many models in economics, game theory and mathematical physics. BL programs show a more complicated structure than standard finite problems. We study the so-called KKT-approach for solving bilevel problems, where the lower level minimality condition is replaced by the KKT- or the FJ-condition. This leads to a special structured mathematical program with complementarity constraints. We analyze the KKT-approach from a generic viewpoint and reveal the advantages and possible drawbacks of this approach for solving BL problems numerically.

Keywords

Bilevel problems KKT-condition FJ-condition Mathematical programs with complementarity constraints Genericity Critical points 

Mathematics Subject Classification

90C30 90C31 

Notes

Acknowledgments

We would like to thank both referee’s for their many valuable comments and for their effort to make the paper more readable.

Open Access

This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

References

  1. 1.
    Bard J.F.: Convex two-level optimization. Math. Program. 40(1), 15–27 (1988)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Bard, J.F.: Practical Bilevel Optimization. Algorithms and Applications. Nonconvex Optimization and Its Applications, vol. 30. Kluwer, Dordrecht (1998)Google Scholar
  3. 3.
    Bouza, G.: Mathematical programs with equilibrium constraints: solution techniques from parametric optimization. PhD thesis, University of Twente, 2006 (PDF-file see: http://wwwhome.math.utwente.nl/~stillgj/opt.html)
  4. 4.
    Bouza G., Still G.: Mathematical programs with complementarity constraints: convergence properties of a smoothing method. Math. Oper. Res. 32(2), 467–483 (2007)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Chen X., Fukushima M.: A smoothing method for a mathematical program with P-matrix linear complementarity constraints. Comput. Optim. Appl. 27(3), 223–246 (2004)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Dempe S.: Annotated bibliography on bilevel programming and mathematical programs with equilibrium constrains. Optimization 52(3), 333–359 (2003)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Facchinei F., Houyuan J., Qi L.: A smoothing method for mathematical programs with equilibrium constraints. Math. Program. 85(1), 107–134 (1999)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Flegel M., Kanzow C.: A Fritz John approach to first order optimality conditions for mathematical programming with equilibrium constraints. Optimization 52(3), 277–286 (2003)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Gómez, W., Guddat, J., Jongen, H.Th., Rückmann, J.J., Solano, C.: Curvas criticas y saltos en la optimizacion no lineal. http://www.emis.de/monographs/curvas/index.html (2000)
  10. 10.
    Guddat J., Guerra F., Jongen H.Th.: Parametric Optimization: Singularities, Pathfollowing and Jumps. Teubner and Wiley, Chichester (1990)MATHGoogle Scholar
  11. 11.
    Jongen H.Th., Rueckmann J.J., Shikhman V.: MPCC: critical point theory. SIAM J. Optim. 20(1), 473–484 (2009)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Jongen, H.Th., Shikhman, V.: Bilevel Optimization: on the structure of the feasible set. Math. Program. (2012, submitted)Google Scholar
  13. 13.
    Luo Z.Q., Pang J.S., Ralph D.: Mathematical Programs with Equilibrium Constraints. Cambridge University Press, Cambridge (1996)CrossRefGoogle Scholar
  14. 14.
    Ralph D., Wright S.J.: Some properties of regularization and penalization schemes for MPEC’s. Optim. Methods Softw. 19(5), 527–556 (2004)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Scheel H., Scholtes S.: Mathematical programs with complementarity constraints: stationarity, optimality and sensitivity. Math. Oper. Res. 25(1), 1–22 (2000)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Scholtes S.: Convergence properties of a regularization scheme for mathematical programs with complementarity constraints. SIAM J. Optim. 11(4), 918–936 (2001)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Scholtes S., Stoehr M.: Exact penalization of mathematical programs with equilibrium constraints. SIAM J. Control Optim. 37(2), 617–652 (1999)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Scholtes S., Stöhr M.: How stringent is the linear independence assumption for mathematical programs with stationary constraints?. Math. Oper. Res. 26(4), 851–863 (2001)MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Stein, O.: Bi-Level Strategies in Semi-Infinite Programming. Nonconvex Optimization and its Applications, vol. 71. Kluwer, Boston, MA (2003)Google Scholar
  20. 20.
    Stein O., Still G.: On generalized semi-infinite optimization and bilevel optimization. Eur. J. Oper. Res. 142(3), 444–462 (2002)MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Stein O., Still G.: Solving semi-infinite optimization problems with interior point techniques. SIAM J. Control Optim. 42(3), 769–788 (2003)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© The Author(s) 2012

Authors and Affiliations

  1. 1.University of HavanaHavanaCuba
  2. 2.University of TwenteEnschedeThe Netherlands

Personalised recommendations