Mathematical Programming

, Volume 141, Issue 1–2, pp 193–215 | Cite as

Computing pure Nash and strong equilibria in bottleneck congestion games

  • Tobias Harks
  • Martin Hoefer
  • Max Klimm
  • Alexander Skopalik
Open Access
Full Length Paper Series A


Bottleneck congestion games properly model the properties of many real-world network routing applications. They are known to possess strong equilibria—a strengthening of Nash equilibrium to resilience against coalitional deviations. In this paper, we study the computational complexity of pure Nash and strong equilibria in these games. We provide a generic centralized algorithm to compute strong equilibria, which has polynomial running time for many interesting classes of games such as, e.g., matroid or single-commodity bottleneck congestion games. In addition, we examine the more demanding goal to reach equilibria in polynomial time using natural improvement dynamics. Using unilateral improvement dynamics in matroid games pure Nash equilibria can be reached efficiently. In contrast, computing even a single coalitional improvement move in matroid and single-commodity games is strongly NP-hard. In addition, we establish a variety of hardness results and lower bounds regarding the duration of unilateral and coalitional improvement dynamics. They continue to hold even for convergence to approximate equilibria.


Bottleneck congestion games Computation of strong equilibria Improvement dynamics 

Mathematics Subject Classification

91A10 Noncooperative games 91A46 Combinatorial games 91-08 Computational methods 90B18 Communication networks 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.


  1. 1.
    Ackermann, H., Berenbrink, P., Fischer, S., Hoefer, M.: Concurrent imitation dynamics in congestion games. In: Proceedings of the 28th Symposium Principles of Distributed Computing (PODC), pp. 63–72 (2009)Google Scholar
  2. 2.
    Ackermann, H., Röglin, H., Vöcking, B.: On the impact of combinatorial structure on congestion games. J. ACM 55(6), 25:1–25:22 (2008)Google Scholar
  3. 3.
    Albers S.: On the value of coordination in network design. SIAM J. Comput. 38(6), 2273–2302 (2009)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Andelman N., Feldman M., Mansour Y.: Strong price of anarchy. Games Econ. Behav. 65(2), 289–317 (2009)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Aumann, R.: Acceptable points in general cooperative n-person games. In: Proceedings of the Contributions to the Theory of Games IV, vol. 40 of Annals of Mathematics Study, pp. 287–324. Princeton University Press, Princeton (1959)Google Scholar
  6. 6.
    Banner R., Orda A.: Bottleneck routing games in communication networks. IEEE J. Sel. Area Comm. 25(6), 1173–1179 (2007)CrossRefGoogle Scholar
  7. 7.
    Bérczi, K., Frank, A.: Packing arborescences. Technical Report TR-2009-04, Egerváry Research Group on Combinatorial Optimization (2009)Google Scholar
  8. 8.
    Bhalgat, A., Chakraborty, T., Khanna, S.: Nash dynamics in congestion games with similar resources. In: Proceedings of the 5th International Workshop Internet & Network Economics (WINE), pp. 362–373 (2009)Google Scholar
  9. 9.
    Busch C., Magdon-Ismail M.: Atomic routing games on maximum congestion. Theoret. Comput. Sci. 410(36), 3337–3975 (2009)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Chakraborty, T., Khanna, S.: Nash dynamics in constant player and bounded jump congestion games. In: Proceedings of the 2nd International Symposium Algorithmic Game Theory (SAGT), pp. 196–207 (2009)Google Scholar
  11. 11.
    Chien S., Sinclair A.: Convergence to approximate Nash equilibria in congestion games. Games Econ. Behav. 71(2), 315–327 (2011)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Cole, R., Dodis, Y., Roughgarden, T.: Bottleneck links, variable demand, and the tragedy of the commons. In: Proceedings of the 17th Symposium Discrete Algorithms (SODA), pp. 668–677 (2006)Google Scholar
  13. 13.
    Cunningham W.: Improved bounds for matroid partition and intersection algorithms. SIAM J. Comput. 15(4), 948–957 (1986)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    de Keijzer, B., Schäfer, G., Telelis, O.: On the inefficiency of equilibria in linear bottleneck congestion games. In: Proceedings of the 3rd International Symposium Algorithmic Game Theory (SAGT), pp. 335–346 (2010)Google Scholar
  15. 15.
    Edmonds J.: Matroid partition. In: Dantzig, G.B., Veinott, A.F. (eds) Mathematics of the Decision Sciences, pp. 335–345. AMS, Providence, RI (1968)Google Scholar
  16. 16.
    Epstein A., Feldman M., Mansour Y.: Efficient graph topologies in network routing games. Games Econ. Behav. 66, 115–125 (2009)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Epstein A., Feldman M., Mansour Y.: Strong equilibrium in cost sharing connection games. Games Econ. Behav. 67(1), 51–68 (2009)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Fabrikant, A., Papadimitriou, C., Talwar, K.: The complexity of pure Nash equilibria. In: Proceedings of the 36th Symposium Theory of Computing (STOC), pp. 604–612 (2004)Google Scholar
  19. 19.
    Feldman M., Tamir T.: Approximate strong equilibrium in job scheduling games. J. Artif. Intell. Res. 36, 387–414 (2009)MathSciNetMATHGoogle Scholar
  20. 20.
    Feldman M., Tennenholtz M.: Structured coalitions in resource selection games. ACM Trans. Intell. Syst. Tech. 1(1), 4 (2010)Google Scholar
  21. 21.
    Fiat, A., Kaplan, H., Levy, M., Olonetsky, S.: Strong price of anarchy for machine load balancing. In: Proceedings of the 34th Intl. Coll. Automata, Languages and Programming (ICALP), pp. 583–594 (2007)Google Scholar
  22. 22.
    Fortune S., Hopcroft J., Wyllie J.: The directed subgraph homeomorphism problem. Theoret. Comput. Sci. 10, 111–121 (1980)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Gabow H.: A matroid approach to finding edge connectivity and packing arborescences. J. Comput. Syst. Sci. 50(2), 259–273 (1995)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Gairing M., Monien B., Tiemann K.: Routing (un-)splittable flow in games with player-specific linear latency functions. ACM Trans. Algorithms 7(3), 31 (2011)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Harks, T., Klimm, M., Möhring, R.: Strong Nash equilibria in games with the lexicographical improvement property. In: Proceedings of the 5th International Workshop Internet & Network Economics (WINE), pp. 463–470 (2009)Google Scholar
  26. 26.
    Hoefer, M., Penn, M., Polukarov, M., Skopalik, A., Vöcking, B.: Considerate equilibrium. In: Proceedings of the 22nd International Joint Conference Artificial Intelligence (IJCAI), pp. 234–239 (2011)Google Scholar
  27. 27.
    Hoefer, M., Skopalik, A.: On the complexity of Pareto-optimal Nash and strong equilibria. In: Proceedings of the 3rd International Symposium Algorithmic Game Theory (SAGT), pp. 312–322 (2010)Google Scholar
  28. 28.
    Holzman R., Law-Yone N.: Strong equilibrium in congestion games. Games Econ. Behav. 21(1–2), 85–101 (1997)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Johnson D., Papadimitriou C., Yannakakis M.: How easy is local search?. J. Comput. Syst. Sci. 37, 79–100 (1988)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Kannan, R., Busch, C.: Bottleneck congestion games with logarithmic price of anarchy. In: Proceedings of the 3rd International Symposium Algorithmic Game Theory (SAGT), pp. 222–233 (2010)Google Scholar
  31. 31.
    Keshav S.: An Engineering Approach to Computer Networking: ATM Networks, the Internet, and the Telephone Network. Addison-Wesley, Boston, MA (1997)Google Scholar
  32. 32.
    Konishi H., Breton M.L., Weber S.: Equilibria in a model with partial rivalry. J. Econ. Theory 72(1), 225–237 (1997)CrossRefMATHGoogle Scholar
  33. 33.
    Korte B., Vygen J.: Combinatorial Optimization: Theory and Algorithms. Springer, Berlin (2002)CrossRefGoogle Scholar
  34. 34.
    Leonardi, S., Sankowski, P.: Network formation games with local coalitions. In: Proceedings of the 26th Symposium Principles of Distributed Computing (PODC), pp. 299–305 (2007)Google Scholar
  35. 35.
    Mavronicolas, M., Milchtaich, I., Monien, B., Tiemann, K.: Congestion games with player-specific constants. In: Proceedings of the 32nd International Symposium Mathematical Foundations of Computer Science (MFCS), pp. 633–644 (2007)Google Scholar
  36. 36.
    Mazalov, V., Monien, B., Schoppmann, F., Tiemann, K.: Wardrop equilibria and price of stability for bottleneck games with splittable traffic. In: Proceedings of the 2nd International Workshop Internet & Network Economics (WINE), pp. 331–342 (2006)Google Scholar
  37. 37.
    Milchtaich I.: Congestion games with player-specific payoff functions. Games Econ. Behav. 13(1), 111–124 (1996)MathSciNetCrossRefMATHGoogle Scholar
  38. 38.
    Monderer, D., Shapley, L.: Potential games. Games Econom. Behav. 14, 1124–1143 (1996)Google Scholar
  39. 39.
    Nash-Williams, C.: An application of matroids to graph theory. In: Rosenstiehl, P. (ed.) Theory of Graphs; Proceedings of an International Symposium in Rome 1966, pp. 263–265 (1967)Google Scholar
  40. 40.
    Qiu L., Yang Y.R., Zhang Y., Shenker S.: On selfish routing in internet-like environments. IEEE/ACM Trans. Netw. 14(4), 725–738 (2006)CrossRefGoogle Scholar
  41. 41.
    Rosenthal R.: A class of games possessing pure-strategy Nash equilibria. Int. J. Game Theory 2, 65–67 (1973)CrossRefMATHGoogle Scholar
  42. 42.
    Roughgarden T.: Routing games. In: Nisan, N., Tardos, É., Roughgarden, T., Vazirani, V. (eds) Algorithmic Game Theory Chapter 18, Cambridge University Press, Cambridge (2007)Google Scholar
  43. 43.
    Rozenfeld, O., Tennenholtz, M.: Strong and correlated strong equilibria in monotone congestion games. In: Proceedings of the 2nd International Workshop Internet & Network Economics (WINE), pp. 74–86 (2006)Google Scholar
  44. 44.
    Schrijver A.: Combinatorial Optimization: Polyhedra and Efficiency. Springer, Berlin (2003)Google Scholar
  45. 45.
    Skopalik, A., Vöcking, B.: Inapproximability of pure Nash equilibria. In: Proceedings of the 40th Symposium Theory of Computing (STOC), pp. 355–364 (2008)Google Scholar
  46. 46.
    Syrgkanis, V.: Equilibria in congestion game models: Existence, complexity and efficiency. Master’s thesis, National Technical University of Athens (2009)Google Scholar
  47. 47.
    Voorneveld M., Borm P., van Megen F., Tijs S., Facchini G.: Congestion games and potentials reconsidered. Int. Game Theory Rev. 1(3), 283–299 (1999)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© The Author(s) 2012

Authors and Affiliations

  • Tobias Harks
    • 1
  • Martin Hoefer
    • 2
  • Max Klimm
    • 3
  • Alexander Skopalik
    • 4
  1. 1.School of Business and EconomicsMaastricht UniversityMaastrichtThe Netherlands
  2. 2.Department of Computer ScienceRWTH Aachen UniversityAachenGermany
  3. 3.Department of MathematicsTU BerlinBerlinGermany
  4. 4.TU DortmundDortmundGermany

Personalised recommendations