Mathematical Programming

, Volume 141, Issue 1–2, pp 257–271 | Cite as

Testing additive integrality gaps

  • Friedrich Eisenbrand
  • Nicolai Hähnle
  • Dömötör Pálvölgyi
  • Gennady Shmonin
Full Length Paper Series A

Abstract

We consider the problem of testing whether the maximum additive integrality gap of a family of integer programs in standard form is bounded by a given constant. This can be viewed as a generalization of the integer rounding property, which can be tested in polynomial time if the number of constraints is fixed. It turns out that this generalization is NP-hard even if the number of constraints is fixed. However, if, in addition, the objective is the all-one vector, then one can test in polynomial time whether the additive gap is bounded by a constant.

Mathematics Subject Classification (2000)

90C10 52C07 11H06 68Q25 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baum S.P., Trotter L.E. Jr: Integer rounding for polymatroid and branching optimization problems. SIAM J. Algebraic Discret. Methods 2(4), 416–425 (1981)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Cook, W.J., Lovász L., Schrijver, A.: A polynomial-time test for total dual integrality in fixed dimension. In: Korte, B.H., Ritter, K. (eds.) Mathematical Programming at Oberwolfach II, vol. 22 of Mathematical Programming Study, pp. 64–69. North-Holland, Amsterdam (1984)Google Scholar
  3. 3.
    Ding G., Feng L., Zang W.: The complexity of recognizing linear systems with certain integrality properties. Math. Program. 114(2), 321–334 (2008)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Eisenbrand F., Shmonin G.: Parametric integer programming in fixed dimension. Math. Oper. Res. 33(4), 839–850 (2008)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Gijswijt D.: Integer decomposition for polyhedra defined by nearly totally unimodular matrices. SIAM J. Discret. Math. 19(3), 798–806 (2005)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Giles, F.R., Orlin, J.B.: Verifying total dual integrality. Manuscript (1981)Google Scholar
  7. 7.
    Hoşten S., Sturmfels B.: Computing the integer programming gap. Combinatorica 27(3), 367–382 (2007)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Hoffman A.J., Kruskal J.B.: Integral boundary points of convex polyhedra. In: Kuhn, H.W., Tucker, A.W. (eds) Linear Inequalities and Related Systems, vol. 38 of Annals of Mathematics Studies, pp. 223–246. Princeton University Press, Princeton, NJ (1956)Google Scholar
  9. 9.
    Kannan, R.: Test sets for integer programs, \({\forall \, \exists}\) sentences. In: Cook, W.J., Seymour, P.D. (eds.) Polyhedral Combinatorics: Proceedings of a DIMACS Workshop held at the Center for Discrete Mathematics and Theoretical Computer Science, 12–16 June 1989, vol. 1 of DIMACS Series in Discrete Mathematics and Theoretical Computer Science American Mathematical Society, pp. 39–47 (1990)Google Scholar
  10. 10.
    Kannan R.: Lattice translates of a polytope and the Frobenius problem. Combinatorica 12(2), 161–177 (1992)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Lenstra H.W. Jr: Integer programming with a fixed number of variables. Math. Oper. Res. 8(4), 538–548 (1983)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Matoušek, J.: Lectures on Discrete Geometry, vol. 212 of Graduate Texts in Mathematics, Springer, Berlin (2002)Google Scholar
  13. 13.
    Pap J.: Recognizing conic TDI systems is hard. Math. Program. 128(1–2, Ser. A), 43–48 (2011)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Papadimitriou C.H.: On the complexity of integer programming. J. ACM 28(4), 765–768 (1981)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Ramírez Alfonsín J.L.: Complexity of the Frobenius problem. Combinatorica 16(1), 143–147 (1996)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Schrijver A.: Theory of Linear and Integer Programming. Wiley-Interscience Series in Discrete Mathematics and Optimization. Wiley, West Sussex (1986)Google Scholar
  17. 17.
    Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency, vol. 24 of Algorithms and Combinatorics. Springer, Berlin (2003)Google Scholar
  18. 18.
    Seymour P.D.: Decomposition of regular matroids. J. Comb. Theory Ser. B 28(3), 305–359 (1980)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Tipnis S.K., Trotter L.E. Jr: Node-packing problems with integer rounding properties. SIAM J. Discret. Math. 2(3), 407–412 (1989)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Vazirani V.V.: Approximation Algorithms. Springer, Berlin (2001)Google Scholar
  21. 21.
    Veinott A.F. Jr, Dantzig G.B.: Integral extreme points. SIAM Rev. 10(3), 371–372 (1968)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Zambelli G.: Colorings of k-balanced matrices and integer decomposition property of related polyhedra. Oper. Res. Lett. 35(3), 353–356 (2007)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer and Mathematical Optimization Society 2012

Authors and Affiliations

  • Friedrich Eisenbrand
    • 1
  • Nicolai Hähnle
    • 1
  • Dömötör Pálvölgyi
    • 2
  • Gennady Shmonin
    • 1
  1. 1.DISOPT, Ecole Polytechnique Fédérale de LausanneLausanneSwitzerland
  2. 2.Eötvös UniversityBudapestHungary

Personalised recommendations