Mathematical Programming

, Volume 137, Issue 1–2, pp 557–578 | Cite as

The tracial moment problem and trace-optimization of polynomials

  • Sabine Burgdorf
  • Kristijan Cafuta
  • Igor Klep
  • Janez Povh
Full Length Paper Series A

Abstract

The main topic addressed in this paper is trace-optimization of polynomials in noncommuting (nc) variables: given an nc polynomial f, what is the smallest trace \({f(\underline {A})}\) can attain for a tuple of matrices \({\underline {A}}\)? A relaxation using semidefinite programming (SDP) based on sums of hermitian squares and commutators is proposed. While this relaxation is not always exact, it gives effectively computable bounds on the optima. To test for exactness, the solution of the dual SDP is investigated. If it satisfies a certain condition called flatness, then the relaxation is exact. In this case it is shown how to extract global trace-optimizers with a procedure based on two ingredients. The first is the solution to the truncated tracial moment problem, and the other crucial component is the numerical implementation of the Artin-Wedderburn theorem for matrix *-algebras due to Murota, Kanno, Kojima, Kojima, and Maehara. Trace-optimization of nc polynomials is a nontrivial extension of polynomial optimization in commuting variables on one side and eigenvalue optimization of nc polynomials on the other side—two topics with many applications, the most prominent being to linear systems engineering and quantum physics. The optimization problems discussed here facilitate new possibilities for applications, e.g. in operator algebras and statistical physics.

Keywords

Sum of squares Noncommutative polynomial Semidefinite programming Tracial moment problem Flat extension Free positivity Real algebraic geometry 

Mathematics Subject Classification (2000)

Primary 90C22 13J30 Secondary 47A57 08B20 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akhiezer, N.I.: The classical moment problem and some related questions in analysis. Translated by N. Kemmer. Hafner Publishing Co., New York (1965)Google Scholar
  2. 2.
    Burgdorf, S., Klep, I.: The truncated tracial moment problem. J. Oper. Theory (to appear). http://arxiv.org/abs/1001.3679
  3. 3.
    Bessis D., Moussa P., Villani M.: Monotonic converging variational approximations to the functional integrals in quantum statistical mechanics. J. Math. Phys. 16(11), 2318–2325 (1975)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bayer C., Teichmann J.: The proof of Tchakaloff’s theorem. Proc. Am. Math. Soc. 134(10), 3035–3040 (2006)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Ben-Tal, A., Nemirovski, A.: Lectures on modern convex optimization. MPS/SIAM Series on Optimization. SIAM, Philadelphia, PA (2001)Google Scholar
  6. 6.
    Curto, R.E., Fialkow, L.A.: Solution of the truncated complex moment problem for flat data. Mem. Am. Math. Soc. 119(568), x+52 (1996)Google Scholar
  7. 7.
    Cimprič J.: A method for computing lowest eigenvalues of symmetric polynomial differential operators by semidefinite programming. J. Math. Anal. Appl. 369(2), 443–452 (2010)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Cafuta, K., Klep, I., Povh, J.: NCSOStools: a computer algebra system for symbolic and numerical computation with noncommutative polynomials. Optim. Methods Softw. 26(3), 363–380 (2011). http://ncsostools.fis.unm.si
  9. 9.
    Choi, M.D., Lam, T.Y., Reznick, B.: Sums of squares of real polynomials. In: K-Theory and Algebraic Geometry: Connections with Quadratic Forms and Division Algebras. Proceedings of Symposia in Pure Mathematics, vol. 58, pp. 103–126. AMS, Providence, RI (1995)Google Scholar
  10. 10.
    Connes A.: Classification of injective factors. Cases II1, II, IIIλ, λ ≠ 1. Ann. Math. 104(2), 73–115 (1976)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    de Oliveira, M.C., Helton, J.W., McCullough, S., Putinar, M.: Engineering systems and free semi-algebraic geometry. In: Emerging Applications of Algebraic Geometry. IMA Volumes in Mathematics and its Applications, vol. 149, pp. 17–62. Springer (2008)Google Scholar
  12. 12.
    Doherty, A.C., Liang, Y.-C., Toner, B., Wehner, S.: The quantum moment problem and bounds on entangled multi-prover games. In: Twenty-Third Annual IEEE Conference on Computational Complexity, pp. 199–210. IEEE Computer Society, Los Alamitos, CA (2008)Google Scholar
  13. 13.
    Eberly W., Giesbrecht M.: Efficient decomposition of separable algebras. J. Symb. Comput. 37, 35–81 (2004)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Friedl K., Rónyai L.: Polynomial time solutions of some problems in computational algebra. Symp. Theory Comput. Am. Math. Soc. 17, 153–162 (1985)Google Scholar
  15. 15.
    Glauber R.J.: The quantum theory of optical coherence. Phys. Rev. 130(6), 2529–2539 (1963)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Helton, J.W., de Oliveira, M., Miller, R.L., Stankus, M.: NCAlgebra: a mathematica package for doing non commuting algebra. http://www.math.ucsd.edu/~ncalg/
  17. 17.
    Helton J.W.: “Positive” noncommutative polynomials are sums of squares. Ann. Math. (2) 156(2), 675–694 (2002)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Henrion, D., Lasserre, J.-B.: Detecting global optimality and extracting solutions in GloptiPoly. In: Positive Polynomials In Control. Lecture Notes in Control and Information Sciences, vol. 312, pp. 293–310. Springer, Berlin (2005)Google Scholar
  19. 19.
    Henrion, D., Lasserre, J.-B., Löfberg, J.: GloptiPoly 3: moments, optimization and semidefinite programming. Optim. Methods Softw. 24(4–5), 761–779 (2009). http://www.laas.fr/~henrion/software/gloptipoly3/
  20. 20.
    Klep I., Povh J.: Semidefinite programming and sums of hermitian squares of noncommutative polynomials. J. Pure Appl. Algebra 214, 740–749 (2010)MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Klep I., Schweighofer M.: Connes’ embedding conjecture and sums of Hermitian squares. Adv. Math. 217(4), 1816–1837 (2008)MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Klep I., Schweighofer M.: Sums of Hermitian squares and the BMV conjecture. J. Stat. Phys. 133(4), 739–760 (2008)MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Lam T.Y.: A First Course In Noncommutative Rings. Graduate Texts in Mathematics, vol. 131. Springer, New York (1991)CrossRefGoogle Scholar
  24. 24.
    Lasserre, J.B.: Global optimization with polynomials and the problem of moments. SIAM J. Optim. 11(3), 796–817 (2000/01)Google Scholar
  25. 25.
    Lasserre J.B.: Moments, Positive Polynomials and Their Applications, vol. 1. Imperial College Press, London (2009)CrossRefGoogle Scholar
  26. 26.
    Laurent, M.: Sums of squares, moment matrices and optimization over polynomials. In: Emerging Applications Of Algebraic Geometry. IMA Volumes in Mathematics and its Applications, vol. 149, pp. 157–270. Springer, New York (2009)Google Scholar
  27. 27.
    Löfberg, J.: YALMIP: A toolbox for modeling and optimization in MATLAB. In: Proceedings of the CACSD Conference, Taipei, Taiwan (2004). http://users.isy.liu.se/johanl/yalmip/
  28. 28.
    Mazziotti, D.A.: Realization of quantum chemistry without wave functions through first-order semidefinite programming. Phys. Rev. Lett. 93(21), 213001, 4 (2004)Google Scholar
  29. 29.
    McCullough S.: Factorization of operator-valued polynomials in several non-commuting variables. Linear Algebra Appl. 326(1–3), 193–203 (2001)MathSciNetMATHCrossRefGoogle Scholar
  30. 30.
    Mittelmann, D.: An independent benchmarking of SDP and SOCP solvers. Math. Program. 95(2, Ser. B), 407–430 (2003). http://plato.asu.edu/sub/pns.html
  31. 31.
    Murota K., Kanno Y., Kojima M., Kojima S.: A numerical algorithm for block-diagonal decomposition of matrix *-algebras with application to semidefinite programming. Jpn. J. Ind. Appl. Math. 27(1), 125–160 (2010)MathSciNetMATHCrossRefGoogle Scholar
  32. 32.
    Maehara T., Murota K.: A numerical algorithm for block-diagonal decomposition of matrix *-algebras with general irreducible components. Jpn. J. Ind. Appl. Math. 27(2), 263–293 (2010)MathSciNetMATHCrossRefGoogle Scholar
  33. 33.
    Malick J., Povh J., Rendl F., Wiegele A.: Regularization methods for semidefinite programming. SIAM J. Optim. 20(1), 336–356 (2009)MathSciNetMATHCrossRefGoogle Scholar
  34. 34.
    Nesterov Y., Nemirovskii A.: Interior-point Polynomial Algorithms In Convex Programming. SIAM Studies in Applied Mathematics, vol. 13. SIAM, Philadelphia (1994)CrossRefGoogle Scholar
  35. 35.
    Parrilo P.A.: Semidefinite programming relaxations for semialgebraic problems. Math. Program. 96(2, Ser. B), 293–320 (2003)MathSciNetMATHCrossRefGoogle Scholar
  36. 36.
    Pironio S., Navascues M., Acin A.: Convergent relaxations of polynomial optimization problems with non-commuting variables. SIAM J. Optim. 20(5), 2157–2180 (2010)MathSciNetMATHCrossRefGoogle Scholar
  37. 37.
    Prajna, S., Papachristodoulou, A., Seiler, P., Parrilo, P.A.: SOSTOOLS and its control applications. In: Positive Polynomials in Control. Lecture Notes in Control and Information Sciences, vol. 312, pp. 273–292. Springer, Berlin (2005). http://www.cds.caltech.edu/sostools/
  38. 38.
    Parrilo, P.A., Sturmfels, B.: Minimizing polynomial functions. In: Algorithmic and Quantitative Real Algebraic Geometry (Piscataway, NJ, 2001). DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 60, pp. 83–99. American Mathematical Society, Providence, RI (2003)Google Scholar
  39. 39.
    Pál, K.F., Vértesi, T.: Quantum bounds on Bell inequalities. Phys. Rev. A (3) 79(2), 022120, 12 (2009)Google Scholar
  40. 40.
    Ramana M.V.: An exact duality theory for semidefinite programming and its complexity implications. Math. Program. Ser. B 77(2), 129–162 (1997)MathSciNetMATHGoogle Scholar
  41. 41.
    Stochel J.: Solving the truncated moment problem solves the full moment problem. Glasg. Math. J. 43(3), 335–341 (2001)MathSciNetMATHCrossRefGoogle Scholar
  42. 42.
    Sturm, J.F.: Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optim. Methods Softw. 11/12(1–4), 625–653 (1999). http://sedumi.ie.lehigh.edu/
  43. 43.
    Toh, K.-C., Todd, M.J., Tütüncü, R.-H.: SDPT3 a Matlab software package for semidenite programming. Optim. Methods Softw. 11, 545–581 (1999). http://www.math.nus.edu.sg/~mattohkc/sdpt3.html
  44. 44.
    Waki, H., Kim, S., Kojima, M., Muramatsu, M., Sugimoto, H.: Algorithm 883: sparsePOP—a sparse semidefinite programming relaxation of polynomial optimization problems. ACM Trans. Math. Softw. 35(2), Art. 15, 13 (2009)Google Scholar
  45. 45.
    Wolkowicz H., Saigal R., Vandenberghe L.: Handbook of Semidefinite Programming. Kluwer, Dordrecht (2000)CrossRefGoogle Scholar
  46. 46.
    Yamashita M., Fujisawa, K., Kojima, M.: Implementation and evaluation of SDPA 6.0 (semidefinite programming algorithm 6.0). Optim. Methods Softw. 18(4), 491–505 (2003). http://sdpa.sourceforge.net/

Copyright information

© Springer and Mathematical Optimization Society 2011

Authors and Affiliations

  • Sabine Burgdorf
    • 1
  • Kristijan Cafuta
    • 2
  • Igor Klep
    • 3
    • 4
  • Janez Povh
    • 5
  1. 1.Institut de MathématiquesUniversité de NeuchâtelNeuchâtelSuisse
  2. 2.Fakulteta za elektrotehniko, Laboratorij za uporabno matematikoUniverza v LjubljaniLjubljanaSlovenia
  3. 3.Fakulteta za naravoslovje in matematikoUniverza v MariboruMariborSlovenia
  4. 4.Fakulteta za matematiko in fizikoUniverza v LjubljaniLjubljanaSlovenia
  5. 5.Fakulteta za informacijske študije v Novem mestuNovo mestoSlovenia

Personalised recommendations