Mathematical Programming

, Volume 137, Issue 1–2, pp 65–90 | Cite as

Algorithms for highly symmetric linear and integer programs

Full Length Paper Series A


This paper deals with exploiting symmetry for solving linear and integer programming problems. Basic properties of linear representations of finite groups can be used to reduce symmetric linear programming to solving linear programs of lower dimension. Combining this approach with knowledge of the geometry of feasible integer solutions yields an algorithm for solving highly symmetric integer linear programs which only takes time which is linear in the number of constraints and quadratic in the dimension.


Linear programming Integer programming Symmetry Permutation group 

Mathematics Subject Classification (2000)

90C10 (90C05, 52B12) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Berthold T., Pfetsch M.E.: Detecting orbitopal symmetries. In: Fleischmann, B., Borgwardt, K.H., Klein, R., Tuma, A. (eds) Operations Research Proceedings 2008, pp. 433–438. Springer, Berlin (2009)CrossRefGoogle Scholar
  2. 2.
    Bixby R., Wagner D.K.: A note on detecting simple redundancies in linear systems. OR Lett. 6(1), 15–17 (1987)MathSciNetMATHGoogle Scholar
  3. 3.
    Bödi R., Grundhöfer T., Herr K.: Symmetries of linear programs. Note Mat. 30(1), 129–132 (2010)MathSciNetGoogle Scholar
  4. 4.
    Bremner, D., Dutour SikiriĆ, M., Schürmann, A.: Polyhedral representation conversion up to symmetries. In: Polyhedral Computation, CRM Proceedings. Lecture Notes, vol. 48, pp. 45–71. American Mathematical Society, Providence (2009)Google Scholar
  5. 5.
    Cameron P.J.: Finite permutation groups and finite simple groups. Bull. Lond. Math. Soc. 13, 1–22 (1981)MATHCrossRefGoogle Scholar
  6. 6.
    Friedman E.J.: Fundamental domains for integer programs with symmetries. In: Zu, Y., Zhu, B., Dress, A. (eds) COCOA 2007, LNCS, vol. 4616, pp. 146–153. Springer, Berlin (2007)Google Scholar
  7. 7.
    Gatermann, K., Parrilo, P.A.: Symmetry groups, semidefinite programs, and sums of squares. J. Pure Appl. Algebra 192(1–3), 95–128 (2004). doi:10.1016/j.jpaa.2003.12.011 Google Scholar
  8. 8.
    Gawrilow, E., Joswig, M.: polymake: a framework for analyzing convex polytopes. In: Polytopes—combinatorics and computation (Oberwolfach, 1997), DMV Sem., vol. 29, pp. 43–73. Birkhäuser, Basel (2000)Google Scholar
  9. 9.
    Kaibel, V., Pfetsch, M.: Packing and partitioning orbitopes. Math. Program. 114(1, Ser. A), 1–36 (2008). doi:10.1007/s10107-006-0081-5
  10. 10.
    Kaibel V., Schwartz A.: On the complexity of polytope isomorphism problems. Graphs Combin. 19(2), 215–230 (2003)MathSciNetMATHGoogle Scholar
  11. 11.
    Köbler J., Schöning U., Torán J.: The Graph Isomorphism Problem: Its Structural Complexity. Progress in Theoretical Computer Science. Birkhäuser Boston Inc., Boston (1993)CrossRefGoogle Scholar
  12. 12.
    Lenstra H.W. Jr.: Integer programming with a fixed number of variables. Math. Oper. Res. 8(4), 538–548 (1983). doi:10.1287/moor.8.4.538 MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Liberti, L.: Reformulations in mathematical programming: automatic symmetry detection and exploitation. Math. Program. 1–32 (2010). doi:10.1007/s10107-010-0351-0
  14. 14.
    Margot, F.: Pruning by isomorphism in branch-and-cut. Math. Program. 94(1, Ser. A), 71–90 (2002). doi:10.1007/s10107-002-0358-2
  15. 15.
    Margot, F.: Exploiting orbits in symmetric ILP. Math. Program. 98(1–3, Ser. B), 3–21 (2003). doi:10.1007/s10107-003-0394-6. Integer programming (Pittsburgh, PA, 2002)
  16. 16.
    Margot F.: Symmetry in integer linear programming. In: Jünger, M., Liebling, T., Naddef, D., Nemhauser, G.L., Pulleyblank, W., Reinelt, G., Rinaldi, G., Wolsey, L. (eds) 50 Years of Integer Programming 1958–2008, chap. 17, pp. 647–681. Springer, Berlin (2010)Google Scholar
  17. 17.
    McKay, B.D.: Nauty (2005).
  18. 18.
    Miller, G.A.: Multiply transitive substitution groups. Trans. Am. Math. Soc. 28(2), 339–345 (1926). doi:10.2307/1989119 Google Scholar
  19. 19.
    Ostrowski, J., Linderoth, J., Rossi, F., Smriglio, S.: Orbital branching. Math. Program. 126(1, Ser. A), 147–148 (2011). doi:10.1007/s10107-009-0273-x
  20. 20.
    Plesken, W., Souvignier, B.: Computing isometries of lattices. J. Symb. Comput. 24(3–4), 327–334 (1997). doi:10.1006/jsco.1996.0130. Computational algebra and number theory (London, 1993)Google Scholar
  21. 21.
    Pokutta, S., Stauffer, G.: Lower bounds for the chvátal-gomory rank in the 0/1 cube. Oper. Res. Lett. 39(3), 200–203 (2011). doi:10.1016/j.orl.2011.03.001;
  22. 22.
    Puget, J.F.: Automatic detection of variable and value symmetries. In: van Beek, P. (ed.) Principles and Practice of Constraint Programming—CP 2005, Lecture Notes in Computer Science, vol. 3709, pp. 475–489. Springer, Berlin (2005).
  23. 23.
    Rehn, T.: Polyhedral Description Conversion Up to Symmetries. Master’s thesis, Otto-von-Guericke Universität Magdeburg (2010).
  24. 24.
    Rehn, T., Schürmann, A.: A C++ tool for the work with symmetric polyhedra. Preliminary version 0.1.1.
  25. 25.
    Rossmann, W.: An introduction through linear groups. In: Lie Groups, Oxford Graduate Texts in Mathematics, vol. 5. Oxford University Press, Oxford (2002)Google Scholar
  26. 26.
    Webb, P.: Finite group representations for the pure mathematician.
  27. 27.
    Ziegler G.M.: Lectures on Polytopes, Graduate Texts in Mathematics, vol. 152. Springer, New York (1995)CrossRefGoogle Scholar

Copyright information

© Springer and Mathematical Optimization Society 2011

Authors and Affiliations

  1. 1.School of EngineeringZürcher Hochschule für Angewandte WissenschaftenWinterthurSwitzerland
  2. 2.Fachbereich MathematikTU DarmstadtDarmstadtGermany

Personalised recommendations