Mathematical Programming

, Volume 135, Issue 1–2, pp 45–87 | Cite as

Mixing polyhedra with two non divisible coefficients

  • Agostinho AgraEmail author
  • Miguel Constantino
Full Length Paper Series A


We consider the mixed-integer set \({X=\{(s,x,y) \in \mathbb{R}\times \mathbb{Z}^n \times \mathbb{Z}^m: s + a_1 x_j \geq b_j, \forall j \in N_1, s + a_2 y_j \geq d_j, j \in N_2\}}\) where \({N_1 = \{1,\ldots,n\},\; N_2 = \{1,\ldots,m\}}\) and \({a_1, a_2 \in\mathbb{Z}_+\setminus\{0\}}\). This set may arise in a relaxation of mixed-integer problems such as lot-sizing problems. We decompose X into a small number of subsets whose convex hull description is trivial. The convex hull of X is equal to the closure of the convex hull of the union of those polyhedra. Using a projection theorem from Balas (Discret Appl Math 89:3–44, 1998) we obtain a compact characterization of the facets of the convex hull of X. Then by studying the projection cone we characterize all the facet-defining inequalities of the convex hull of X in the space of the original variables. Each of those inequalities is either a mixed MIR inequality (Günlük and Pochet in Math Programm 90:429–457, 2001), or it is based on a directed cycle on a special bipartite graph. When a 1 and a 2 are relative prime, the convex hull of X is described by the mixed MIR inequalities.


Polyhedral description Mixed integer programming 

Mathematics Subject Classification (2000)

90C11 90C57 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agra A., Constantino M.: A compact formulation of a mixed-integer set. Optimization 59(5), 729–745 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Balas E.: Disjuntive programming: properties of the convex hull of feasible points. Discret. Appl. Math. 89, 3–44 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Balas, E.: Projection and lifting in combinatorial optimization. In: Junger, M., Naddef, D. (eds.) Computational Combinatorial Optimization. Lect. Notes Comput. Sci. 2241, 26–56 (2001)Google Scholar
  4. 4.
    Conforti, M., Cornujols, G., Zambelli, G.: Polyhedral approaches to mixed integer linear programming. In: 50 Years of Integer Programming, pp. 1958–2008. Springer, Berlin (2010)Google Scholar
  5. 5.
    Conforti M., Wolsey L.: Compact formulations as union of polyhedra. Math. Programm. 114, 277–289 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Conforti M., Di Summa M., Wolsey L.: The mixing set with flows. SIAM J. Discret. Math. 21, 396–407 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Conforti M., Di Summa M., Eisenbrand F., Wolsey L.: Network formulations of mixed-integer programs. Math. Oper. Res. 34, 194–209 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Conforti, M., Di Summa, M., Wolsey, L.: The Mixing Set with Divisible Capacities. In: Lodi, A., Pasconensi, A., Rinaldi, G. (eds.) Integer programming and combinatorial optimization. Lect. Notes Comput. Sci. 5035, 435–449 (2008)Google Scholar
  9. 9.
    Conforti M., Zambelli G.: The mixing set with divisible capacities: a simple approach. Oper. Res. Lett. 37, 379–383 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Constantino M., Miller A., van Vyve M.: Mixing MIR inequalities with two divisible coefficients. Math. Programm. 123, 451–483 (2010)zbMATHCrossRefGoogle Scholar
  11. 11.
    Di Summa M.: The Mixing Set with Divisible Capacities. Working paper. University of Padua, Padua (2007)Google Scholar
  12. 12.
    Eisenbrand F., Rothvoß T.: New hardness results for diophantine approximation. Lect. Notes Comput. Sci. 5687, 98–110 (2009)CrossRefGoogle Scholar
  13. 13.
    Günlük O., Pochet Y.: Mixing mixed integer inequalities. Math. Programm. 90, 429–457 (2001)zbMATHCrossRefGoogle Scholar
  14. 14.
    Marchand H., Martin A., Weismantel R., Wolsey L.: Cutting planes in integer and mixed integer programming. Discret. Appl. Math. 123, 397–446 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Marchand H., Wolsey L.: Aggregation and mixed integer rounding to solve MIP’s. Oper. Res. 49, 363–371 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Nemhauser G., Wolsey L.: Integer and Combinatorial Optimization. Wiley, New York (1988)zbMATHGoogle Scholar
  17. 17.
    Pochet Y., Wolsey L.: Production Planning by Mixed Integer Programming. Springer, Berlin (2005)Google Scholar
  18. 18.
    Wolsey L.: Strong formulations for mixed integer programs: valid inequalities and extended formulations. Math. Programm. 97, 423–447 (2003)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Zhao M., De Farias I.: The mixing-MIR set with divisible capacities. Math. Programm. 115, 73–103 (2008)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer and Mathematical Optimization Society 2011

Authors and Affiliations

  1. 1.DMat and CIDMA, University of AveiroAveiroPortugal
  2. 2.CIO and DEIO, Faculdade de Ciências da Universidade de LisboaUniversity of LisbonLisbonPortugal

Personalised recommendations