Mathematical Programming

, Volume 131, Issue 1–2, pp 381–401 | Cite as

Extending the QCR method to general mixed-integer programs

  • Alain Billionnet
  • Sourour Elloumi
  • Amélie Lambert
Full Length Paper Series A

Abstract

Let (MQP) be a general mixed integer quadratic program that consists of minimizing a quadratic function subject to linear constraints. In this paper, we present a convex reformulation of (MQP), i.e. we reformulate (MQP) into an equivalent program, with a convex objective function. Such a reformulation can be solved by a standard solver that uses a branch and bound algorithm. We prove that our reformulation is the best one within a convex reformulation scheme, from the continuous relaxation point of view. This reformulation, that we call MIQCR (Mixed Integer Quadratic Convex Reformulation), is based on the solution of an SDP relaxation of (MQP). Computational experiences are carried out with instances of (MQP) including one equality constraint or one inequality constraint. The results show that most of the considered instances with up to 40 variables can be solved in 1 h of CPU time by a standard solver.

Keywords

General integer programming Mixed-integer programming Quadratic programming Convex reformulation Semi-definite programming Experiments 

Mathematics Subject Classification (2000)

90C11 Mixed integer programming 90C20 Quadratic programming 90C22 Semidefinite programming 90C26 Nonconvex programming 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Audet C., Hansen P., Savard G.: Essays and Surveys in Global Optimization. GERAD 25th Anniversary Series, Springer, New York (2005)MATHCrossRefGoogle Scholar
  2. 2.
    Billionnet A., Elloumi S.: Using a mixed integer quadratic programming solver for the unconstrained quadratic 0–1 problem. Math. Program. 109, 55–68 (2007)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Billionnet A., Elloumi S., Plateau M.-C.: Improving the performance of standard solvers for quadratic 0–1 programs by a tight convex reformulation: the QCR method. Discrete Appl. Math. 157(6), 1185–1197 (2009)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Bonami P., Biegler L., Conn A., Cornuéjols G., Grossmann I., Laird C., Lee J., Lodi A., Margot F., Sawaya N., Waechter A.: An algorithmic framework for convex mixed integer nonlinear programming. Discrete Optim. 5, 186–204 (2005)CrossRefGoogle Scholar
  5. 5.
    Borchers B.: CSDP, A C library for semidefinite programming. Optim. Methods Softw. 11(1), 613–623 (1999)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Caprara A.: Constrained 0–1 quadratic programming: basic approaches and extensions. Eur. J. Oper. Res. 187(3), 1494–1503 (2008)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Cui Y.: Dynamic programming algorithms for the optimal cutting of equal rectangles. Appl.Math. Model. 29, 1040–1053 (2005)MATHCrossRefGoogle Scholar
  8. 8.
    Floudas C.A.: Deterministic Global Optimization. Kluwer, Dordrecht (2000)Google Scholar
  9. 9.
    Faye A., Roupin F.: Partial lagrangian relaxation for general quadratic programming, 4’ OR. Q. J. Oper. Res. 5(1), 75–88 (2007)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Frangioni A., Gentile C.: Perspective cuts for a class of convex 0–1 mixed integer programs. Math. Program. 106, 225–236 (2006)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Fu H.L., Shiue L., Cheng X., Du D.Z., Kim J.M.: Quadratic integer programming with application in the chaotic mappings of complete multipartite graphs. J. Optim. Theory Appl. 110(3), 545–556 (2001)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Garey M.R., Johnson D.S.: Computers and Intractability: a guide to the theory of NP-Completness. W.H. Freeman, San Francisco (1979)Google Scholar
  13. 13.
    Glover F., Woolsey R.E.: Converting the 0–1 polynomial programming problem to a 0–1 linear program. Oper. Res. 22, 180–182 (1974)MATHCrossRefGoogle Scholar
  14. 14.
    Glover F.: Improved linear integer programming formulations of nonlinear integer problems. Manag. Sci. 22, 455–460 (1975)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Hammer P.L., Rubin A.A.: Some remarks on quadratic programming with 0–1 variables. Revue Française d’Informatique et de Recherche Opérationnelle. 4(3), 67–79 (1970)MathSciNetGoogle Scholar
  16. 16.
    Helmberg C., Rendl F.: Solving quadratic (0,1)-problems by semidefinite programs and cutting planes. Math. Program. 82, 291–315 (1998)MathSciNetMATHGoogle Scholar
  17. 17.
    Hua Z.S., Banerjee P.: Aggregate line capacity design for PWB assembly systems. Int. J. Prod. Res. 38(11), 2417–2441 (2000)MATHCrossRefGoogle Scholar
  18. 18.
    ILOG. ILOG CPLEX 11.0 Reference Manual. ILOG CPLEX Division, Gentilly (2008)Google Scholar
  19. 19.
    Körner F.: A new bound for the quadratic knapsack problem and its use in a branch and bound algorithm. Optimization. 17, 643–648 (1986)MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Körner F.: An efficient branch and bound algorithm to solve the quadratic integer programming problem. Computing. 30, 253–260 (1983)MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Liberti L., Maculan N.: Global Optimization: From Theory to Implementation, Chapter: Nonconvex Optimization and Its Applications. Springer, New York (2006)Google Scholar
  22. 22.
    McCormick G.P.: Computability of global solutions to factorable non-convex programs: part I—convex underestimating problems. Math. Program. 10(1), 147–175 (1976)MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Saxena A., Bonami P., Lee J.: Disjunctive Cuts for Non-Convex Mixed Integer Quadratically Constrained Programs. IPCO, Bologna (2008)Google Scholar
  24. 24.
    Sherali H.D., Adams W.P.: A tight linearization and an algorithm for zero-one quadratic programming problems. Manage. Sci. 32(10), 1274–1290 (1986)MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Tawarmalani M., Sahinidis N.V.: Global optimization of mixed-integer nonlinear programs: a theoretical and computational study. Math. Program. 99(3), 563–591 (2004)MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Tawarmalani M., Sahinidis N.V.: Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming. Kluwer, Dordrecht (2002)MATHGoogle Scholar

Copyright information

© Springer and Mathematical Programming Society 2010

Authors and Affiliations

  • Alain Billionnet
    • 1
  • Sourour Elloumi
    • 2
  • Amélie Lambert
    • 2
  1. 1.CEDRIC-ENSIIEEvry cedexFrance
  2. 2.CEDRIC-CNAMParis cedex 03France

Personalised recommendations