Advertisement

Mathematical Programming

, Volume 124, Issue 1–2, pp 413–439 | Cite as

Orientation-based models for {0,1,2}-survivable network design: theory and practice

  • Markus Chimani
  • Maria Kandyba
  • Ivana Ljubić
  • Petra Mutzel
Full Length Paper Series B

Abstract

We consider {0,1,2}-Survivable Network Design problems with node-connectivity constraints. In the most prominent variant, we are given an edge-weighted graph and two customer sets \({\fancyscript{R}_1}\) and \({\fancyscript{R}_2}\) ; we ask for a minimum cost subgraph that connects all customers, and guarantees two-node-connectivity for the \({\fancyscript{R}_2}\) customers. We also consider an alternative of this problem, in which 2-node-connectivity is only required w.r.t. a certain root node, and its prize-collecting variant. The central result of this paper is a novel graph-theoretical characterization of 2-node-connected graphs via orientation properties. This allows us to derive two classes of ILP formulations based on directed graphs, one using multi-commodity flow and one using cut-inequalities. We prove the theoretical advantages of these directed models compared to the previously known ILP approaches. We show that our two concepts are equivalent from the polyhedral point of view. On the other hand, our experimental study shows that the cut formulation is much more powerful in practice. Moreover, we propose a collection of benchmark instances that can be used for further research on this topic.

Keywords

Graph orientation 2-connected networks ILP formulations Branch and cut 

Mathematics Subject Classification (2000)

90C27 90C57 90C90 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bachhiesl, P.: The OPT- and the SST-problems for real world access network design—basic definitions and test instances. Working Report NetQuest 01/2005, Carinthia Tech Institute, Klagenfurt, Austria (2005)Google Scholar
  2. 2.
    Brandes, U.: Eager st-ordering. In: Proceedings of the 10th European Symposium on Algorithms (ESA 02), LNCS, vol. 2461, pp. 247–256. Springer (2002)Google Scholar
  3. 3.
    Cherkassky B.V., Goldberg A.V.: On implementing push-relabel method for the maximum flow problem. Algorithmica 19, 390–410 (1997)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Chimani, M., Kandyba, M., Ljubić, I., Mutzel, P.: Strong formulations for 2-node-connected Steiner network problems. In: Proceedings of the 2nd Annual International Conference on Combinatorial Optimization and Applications (COCOA 2008), LNCS, vol. 5165, pp. 190–200. Springer (2008)Google Scholar
  5. 5.
    Chimani M., Kandyba M., Ljubić I., Mutzel P.: Obtaining optimal k-cardinality trees fast. ACM J. Exp. Algorithm. 14(2), 5.1–5.23 (2009)Google Scholar
  6. 6.
    Chimani, M., Kandyba, M., Mutzel, P.: A new ILP formulation for 2-root-connected prize-collecting Steiner networks. In: Proceedings of the 15th European Symposium on Algorithm (ESA 2007), LNCS, vol. 4698, pp. 681–692. Springer (2007)Google Scholar
  7. 7.
    Chopra S.: Polyhedra of the equivalent subgraph problem and some edge connectivity problems. SIAM J. Discrete Math. 5(3), 321–337 (1992)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Goemans M.X., Myung Y.: A catalog of Steiner tree formulations. Networks 23, 19–28 (1993)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Grötschel M., Monma C.L.: Integer polyhedra arising from certain network design problems with connectivity constraints. SIAM J. Discret. Math. 3(4), 502–523 (1990)MATHCrossRefGoogle Scholar
  10. 10.
    Grötschel, M., Monma, C.L., Stoer, M.: Polyhedral approaches to network survivability. In: Reliability of computer and communication networks, Proceedings of Workshop 1989, Discrete Mathematics and Theoretical Computer Science, vol. 5, pp. 121–141. American Mathematical Society (1991)Google Scholar
  11. 11.
    Grötschel M., Monma C.L., Stoer M.: Computational results with a cutting plane algorithm for designing communication networks with low-connectivity constraints. Operatios Res. 40(2), 309–330 (1992)MATHCrossRefGoogle Scholar
  12. 12.
    Grötschel M., Monma C.L., Stoer M.: Facets for polyhedra arising in the design of communication networks with low-connectivity constraints. SIAM J. Optim. 2(3), 474–504 (1992)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Johnson, D.S., Minkoff, M., Phillips, S.: The prize-collecting steiner tree problem: Theory and practice. In: Proceedings of 11th ACM-SIAM Symposium on Distcrete Algorithms, pp. 760–769 (2000)Google Scholar
  14. 14.
    Kerivin H., Mahjoub A.R.: Design of survivable networks: a survey. Networks 46(1), 1–21 (2005)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Kerivin, H., Mahjoub, A.R., Nocq, C.: (1,2)-Survivable networks: facets and branch-and-cut. In: M. Grötschel (ed.) The Sharpest Cut, MPS-SIAM Series in optimization, pp. 121–152. SIAM (2004)Google Scholar
  16. 16.
    Koch T., Martin A.: Solving steiner tree problems in graphs to optimality. Networks 32(3), 207–232 (1998)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Ljubić, I.: Exact and memetic algorithms for two network design problems. Ph.D. thesis, TU Vienna (2004)Google Scholar
  18. 18.
    Ljubić I., Weiskircher R., Pferschy U., Klau G., Mutzel P., Fischetti M.: An algorithmic framework for the exact solution of the prize-collecting steiner tree problem. Math. Prog. Ser. B 105(2–3), 427–449 (2006)MATHCrossRefGoogle Scholar
  19. 19.
    Lucena A., Resende M.G.C.: Strong lower bounds for the prize-collecting steiner problem in graphs. Discrete Appl. Math. 141(1–3), 277–294 (2003)MathSciNetGoogle Scholar
  20. 20.
    Magnanti T.L., Raghavan S.: Strong formulations for network design problems with connectivity requirements. Networks 45(2), 61–79 (2005)MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Monma C.L., Munson B.S., Pulleyblank W.R.: Minimum-weight two-connected spanning networks. Math. Program. 46(2), 153–171 (1990)MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Orlowski, S., Pióro, M., Tomaszewski, A., Wessäly, R.: SNDlib 1.0—Survivable Network Design Library. In: Proceedings of the 3rd International Network Optimization Conference (INOC 2007) (2007). http://sndlib.zib.de
  23. 23.
    Polzin T., Daneshmand S.V.: Improved algorithms for the Steiner problem in networks. Discrete Appl. Math. 112(1–3), 263–300 (2001)MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Raghavan, S.: Formulations and algorithms for the network design problems with connectivity requirements. Ph.D. thesis, MIT, Cambridge, MA (1995)Google Scholar
  25. 25.
    Robbins H.: A theorem on graphs with an application to a problem of traffic control. Am. Math. Mon. 46, 281–283 (1939)CrossRefMathSciNetGoogle Scholar
  26. 26.
    Stoer M.: Design of Survivable Networks, LNCS, vol. 1531. Springer, Berlin (1992)Google Scholar
  27. 27.
    TSNDLib: Collection of benchmark instances for Topological {0,1,2}-Survivable Network Design problems (2008). http://ls11-www.cs.tu-dortmund.de/TSNDLib/
  28. 28.
  29. 29.
    Wagner, D.: Generierung und Adaptierung von Testinstanzen für das OPT und SST Problem. Tech. Rep. 03/2007, Carinthia Tech Institute, Klagenfurt, Austria (2007). In germanGoogle Scholar
  30. 30.
    Wagner, D., Raidl, G.R., Pferschy, U., Mutzel, P., Bachhiesl, P.: A multi-commodity flow approach for the design of the last mile in real-world fiber optic networks. In: Proc. OR ’06, pp. 197–202. Springer (2006)Google Scholar
  31. 31.
    Wagner, D., Raidl, G.R., Pferschy, U., Mutzel, P., Bachhiesl, P.: A directed cut for the design of the last mile in real-world fiber optic networks. In: Proceedings of the International Network Optimization Conference 2007 (2007)Google Scholar
  32. 32.
    Wolsey L.A.: Integer Programming. Wiley-Interscience, USA (1998)MATHGoogle Scholar

Copyright information

© Springer and Mathematical Programming Society 2010

Authors and Affiliations

  • Markus Chimani
    • 1
  • Maria Kandyba
    • 1
  • Ivana Ljubić
    • 2
  • Petra Mutzel
    • 1
  1. 1.Chair XI Algorithm EngineeringTU DortmundDortmundGermany
  2. 2.Department of Statistics and Decision Support SystemsUniversity of ViennaViennaAustria

Personalised recommendations