Mathematical Programming

, Volume 124, Issue 1–2, pp 481–512 | Cite as

Strong valid inequalities for orthogonal disjunctions and bilinear covering sets

  • Mohit Tawarmalani
  • Jean-Philippe P. Richard
  • Kwanghun Chung
Full Length Paper Series B


In this paper, we derive a closed-form characterization of the convex hull of a generic nonlinear set, when this convex hull is completely determined by orthogonal restrictions of the original set. Although the tools used in this construction include disjunctive programming and convex extensions, our characterization does not introduce additional variables. We develop and apply a toolbox of results to check the technical assumptions under which this convexification tool can be employed. We demonstrate its applicability in integer programming by providing an alternate derivation of the split cut for mixed-integer polyhedral sets and finding the convex hull of certain mixed/pure-integer bilinear sets. We then extend the utility of the convexification tool to relaxing nonconvex inequalities, which are not naturally disjunctive, by providing sufficient conditions for establishing the convex extension property over the non-negative orthant. We illustrate the utility of this result by deriving the convex hull of a continuous bilinear covering set over the non-negative orthant. Although we illustrate our results primarily on bilinear covering sets, they also apply to more general polynomial covering sets for which they yield new tight relaxations.

Mathematics Subject Classification (2000)

46N10 90C11 90C26 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adjiman C.S., Androulakis I.P., Floudas C.A.: A global optimization method, αBB, for general twice-differentiable constrained NLPs—II. Implementation and computational results. Comput. Chem. Eng. 22, 1159–1179 (1998)CrossRefGoogle Scholar
  2. 2.
    Atamtürk A.: Strong formulations of robust mixed 0–1 programming. Math. Program. 108, 235–250 (2006)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Balas E.: Intersection cuts—a new type of cutting planes for integer programming. Oper. Res. 19, 19–39 (1971)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Balas E.: Disjunctive programming: cutting planes from logical conditions. In: Mangasarian, O.L., Meyer, R.R., Robinson, S.M. (eds) Nonlinear Programming, pp. 279–312. Academic Press, New York (1975)Google Scholar
  5. 5.
    Balas E.: Disjunctive programming. Ann. Discret. Math. 5, 3–51 (1979)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Balas E.: Disjunctive programming and a hierarchy of relaxations for discrete optimization problems. SIAM J. Algebraic Discret. Methods 6, 466–486 (1985)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Balas, E.: Disjunctive programming: properties of the convex hull of feasible points. Discret. Appl. Math. 89(1–3), 3–44, original manuscript was published as a technical report in 1974 (1998)Google Scholar
  8. 8.
    Balas E.: Projection, lifting and extended formulation in integer and combinatorial optimization. Ann. Oper. Res. 140, 125–161 (2005)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Balas E., Perregaard M.: A precise correspondence between lift-and-project cuts, simple disjunctive cuts, and mixed-integer gomory cuts for 0–1 programming. Math. Program. 94, 221–245 (2003)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Balas E., Ceria S., Cornuéjols G.: A lift-and-project cutting plane algorithm for mixed 0–1 programs. Math. Program. 58, 295–324 (1993)CrossRefGoogle Scholar
  11. 11.
    Balas E., Bockmayr A., Pisaruk N., Wolsey L.: On unions and dominants of polytopes. Math. Program. 99, 223–239 (2004)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Belotti, P., Lee, J., Liberti, L., Margot, F., Waechter, A.: Branching and bounds tightening techniques for non-convex MINLP. (2008)
  13. 13.
    Bliek, C., Jermann, C., Neumaier, A. (eds.): Global Optimization and Constraint Satisfaction, 5th Annual Workshop on Global Constraint Optimization and Constraint Satisfaction, COCOS, Springer (2002)Google Scholar
  14. 14.
    Ceria S., Soares J.: Convex programming for disjunctive convex optimization. Math. Program. 86, 595–614 (1999)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Cook W., Kannan R., Schrijver A.: Chvátal closures for mixed integer programming problems. Math. Program. 47, 155–174 (1990)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Cornuéjols G., Lemaréchal C.: A convex-analysis perspective on disjunctive cuts. Math. Program. 106, 567–586 (2006)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Falk J.E., Soland R.M.: An algorithm for separable nonconvex programming problems. Manag. Sci. 15, 550–569 (1969)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Fukuda K., Liebling T.M., Lütolf C.: Extended convex hull. Comput. Geom. 20, 13–23 (2001)MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Harjunkoski I., Westerlund T., Porn R., Skrifvars H.: Different transformations for solving non-convex trim-loss problems by MINLP. Eur. J. Oper. Res. 105, 594–603 (1998)MATHCrossRefGoogle Scholar
  20. 20.
    Horst R., Tuy H.: Global Optimization: Deterministic Approaches, 3rd edn. Springer, Berlin (1996)MATHGoogle Scholar
  21. 21.
    LINDO Systems Inc: LINGO 11.0 optimization modeling software for linear, nonlinear, and integer programming. (2008)
  22. 22.
    McCormick G.P.: Computability of global solutions to factorable nonconvex programs: Part I—convex underestimating problems. Math. Program. 10, 147–175 (1976)MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Neumaier A.: Complete search in continuous global optimization and constraint satisfaction. Acta Numerica 13, 271–369 (2004)MathSciNetGoogle Scholar
  24. 24.
    Rockafellar R.T.: Convex Analysis. Princeton University Press, Princeton (1970)MATHGoogle Scholar
  25. 25.
    Sahinidis, N.V., Tawarmalani, M.: BARON. The Optimization Firm, LLC, Urbana-Champaign, IL. (2005)
  26. 26.
    Sawaya N.W., Grossmann I.E.: A cutting plane method for solving linear generalized disjunctive programming problems. Comput. Chem. Eng. 29, 1891–1913 (2005)CrossRefGoogle Scholar
  27. 27.
    Sherali H.D., Sen S.: Cuts from combinatorial disjunctions. Oper. Res. 33, 928–933 (1985)MATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Stubbs R., Mehrotra S.: A branch-and-cut method for 0–1 mixed convex programming. Math. Program. 86, 515–532 (1999)MATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Tawarmalani M., Sahinidis N.V.: Semidefinite relaxations of fractional programs via novel techniques for constructing convex envelopes of nonlinear functions. J. Glob. Optim. 20, 137–158 (2001)MATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Tawarmalani M., Sahinidis N.V.: Convex extensions and envelopes of lower semi-continuous functions. Math. Program. 93, 247–263 (2002)MATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Tawarmalani M., Sahinidis N.V.: Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming: Theory, Algorithms, Software, and Applications. Kluwer, Dordrecht (2002)MATHGoogle Scholar
  32. 32.
    Tawarmalani M., Sahinidis N.V.: A polyhedral branch-and-cut approach to global optimization. Math. Program. 103, 225–249 (2005)MATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    Tawarmalani, M., Richard, J.P.P., Chung, K.: Strong Valid Inequalities for Orthogonal Disjunctions and Polynomial Covering Sets, Technical Report, Krannert School of Management, Purdue University (2008)Google Scholar
  34. 34.
    Ziegler G.M.: Lectures on Polytopes. Springer, New York (1998)Google Scholar

Copyright information

© Springer and Mathematical Programming Society 2010

Authors and Affiliations

  • Mohit Tawarmalani
    • 1
  • Jean-Philippe P. Richard
    • 2
  • Kwanghun Chung
    • 2
  1. 1.Krannert School of ManagementPurdue UniversityWest LafayetteUSA
  2. 2.Department of Industrial and Systems EngineeringUniversity of FloridaGainesvilleUSA

Personalised recommendations